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A DYNAMIC MODEL FOR BINARY PANEL DATA WITH
UNOBSERVED HETEROGENEITY ADMITTING
A

√
n-CONSISTENT CONDITIONAL ESTIMATOR

BY FRANCESCO BARTOLUCCI AND VALENTINA NIGRO1

A model for binary panel data is introduced which allows for state dependence and
unobserved heterogeneity beyond the effect of available covariates. The model is of
quadratic exponential type and its structure closely resembles that of the dynamic logit
model. However, it has the advantage of being easily estimable via conditional likeli-
hood with at least two observations (further to an initial observation) and even in the
presence of time dummies among the regressors.

KEYWORDS: Longitudinal data, quadratic exponential distribution, state depen-
dence.

1. INTRODUCTION

BINARY PANEL DATA ARE USUALLY ANALYZED by using a dynamic logit or pro-
bit model which includes, among the explanatory variables, the lags of the re-
sponse variable and has individual-specific intercepts; see Arellano and Hon-
oré (2001) and Hsiao (2005), among others. These models allow us to dis-
entangle the true state dependence (i.e., how the experience of an event in
the past can influence the occurrence of the same event in the future) from
the propensity to experience a certain outcome in all periods, when the lat-
ter depends on unobservable factors (see Heckman (1981a, 1981b)). State de-
pendence arises in many economic contexts, such as job decision, investment
choice, and brand choice, and can determine different policy implications. The
parameters of main interest in these models are typically those for the covari-
ates and the true state dependence, which are referred to as structural parame-
ters. The individual-specific intercepts are referred to as incidental parameters;
they are of interest only in certain situations, such as when we need to obtain
marginal effects and predictions.

In this paper, we introduce a model for binary panel data which closely re-
sembles the dynamic logit model, and, as such, allows for state dependence and
unobserved heterogeneity between subjects, beyond the effect of the available
covariates. The model is a version of the quadratic exponential model (Cox
(1972)) with covariates in which (i) the first-order effects depend on the covari-
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ates and on an individual-specific parameter for the unobserved heterogeneity,
and (ii) the second-order effects are equal to a common parameter when they
are referred to pairs of consecutive response variables and to 0 otherwise. We
show that this parameter has the same interpretation that it has in the dynamic
logit model in terms of log-odds ratio, a measure of association between binary
variables which is well known in the statistical literature on categorical data
analysis (Agresti (2002, Chap. 8)). For the proposed model, we also provide
a justification as a latent index model in which the systematic component de-
pends on expectation about future outcomes, beyond the covariates and the
lags of the response variable, and the stochastic component has a standard lo-
gistic distribution.

An important feature of the proposed model is that, as for the static logit
model, the incidental parameters can be eliminated by conditioning on suffi-
cient statistics for these parameters, which correspond to the sums of the re-
sponse variables at individual level. Using a terminology derived from Rasch
(1961), these statistics will be referred to as total scores. The resulting condi-
tional likelihood allows us to identify the structural parameters for the covari-
ates and the state dependence with at least two observations (further to an
initial observation). The estimator of the structural parameters based on the
maximization of this function is

√
n-consistent; moreover, it is simpler to com-

pute than the estimator of Honoré and Kyriazidou (2000) and may be used
even in the presence of time dummies. On the basis of a simulation study, the
results of which are reported in the Supplemental Material file (Bartolucci and
Nigro (2010)), we also notice that the estimator has good finite-sample prop-
erties in terms of both bias and efficiency.

The paper is organized as follows. In the next section, we briefly review the
dynamic logit model for binary panel data. The proposed model is described in
Section 3, where we also show that the total scores are sufficient statistics for
its incidental parameters. Identification of the structural parameters and the
conditional maximum likelihood estimator of these parameters is illustrated in
Section 4.

2. DYNAMIC LOGIT MODEL FOR BINARY PANEL DATA

In the following discussion, we first review the dynamic logit model for bi-
nary panel data; then we discuss conditional inference and related inferential
methods on its structural parameters.

2.1. Basic Assumptions

Let yit be a binary response variable equal to 1 if subject i (i = 1� � � � � n)
makes a certain choice at time t (t = 1� � � � �T ) and equal to 0 otherwise; also
let xit be a corresponding vector of strictly exogenous covariates. The standard
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fixed-effects approach for binary panel data assumes that

yit = 1{y∗
it ≥ 0}�(1)

y∗
it = αi + x′

itβ+ yi�t−1γ + εit� i = 1� � � � � n� t = 1� � � � �T�

where 1{·} is the indicator function and y∗
it is a latent variable which may be

interpreted as utility (or propensity) of the choice. Moreover, the zero-mean
random variables εit represent error terms. Of primary interest are the vector
of parameters for the covariates, β, and the parameter that measures the state
dependence effect, γ. These are the structural parameters which are collected
in the vector θ = (β′�γ)′. The individual-specific intercepts αi are instead the
incidental parameters.

The error terms εit are typically assumed to be independent and identically
distributed conditionally on the covariates and the individual-specific parame-
ters, and assumed to have a standard logistic distribution. The conditional dis-
tribution of yit given αi, Xi = (xi1 · · · xiT ) and yi0� � � � � yi�t−1 can then be ex-
pressed as

p(yit|αi�Xi� yi0� � � � � yi�t−1) = p(yit|αi�xit � yi�t−1)(2)

= exp[yit(αi + x′
itβ+ yi�t−1γ)]

1 + exp(αi + x′
itβ+ yi�t−1γ)

for i = 1� � � � � n and t = 1� � � � �T . This is a dynamic logit formulation which
implies the following conditional distribution of the overall vector of response
variables yi = (yi1� � � � � yiT )

′ given αi�Xi and yi0:

p(yi|αi�Xi� yi0)=
exp

(
yi+αi +

∑
t

yitx′
itβ+ yi∗γ

)
∏
t

[1 + exp(αi + x′
itβ+ yi�t−1γ)]

�(3)

where yi+ = ∑
t yit and yi∗ = ∑

t yi�t−1yit , with the sum
∑

t and the product
∏

t

ranging over t = 1� � � � �T . The statistic yi+ is referred to as the total score of
subject i.

For what follows, it is important to note that

log
p(yit = 0|αi�Xi� yi�t−1 = 0)p(yit = 1|αi�Xi� yi�t−1 = 1)
p(yit = 0|αi�Xi� yi�t−1 = 1)p(yit = 1|αi�Xi� yi�t−1 = 0)

= γ

for i = 1� � � � � n and t = 1� � � � �T . Thus, the parameter γ for the state depen-
dence corresponds to the conditional log-odds ratio between (yi�t−1� yit) for
every i and t.
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2.2. Conditional Inference

As mentioned in Section 1, an effective approach to estimate the model illus-
trated above is based on the maximization of the conditional likelihood given
suitable sufficient statistics.

For the static version of the model, in which the parameter γ is equal to
0, we have that yi is conditionally independent of αi given yi0, Xi, and the to-
tal score yi+, and then p(yi|αi�Xi� yi+)= p(yi|Xi� yi+). The likelihood based on
this conditional probability allows us to identify β for T ≥ 2; by maximizing this
likelihood we also obtain a

√
n-consistent estimator of β. Even though referred

to a simpler context, this result goes back to Rasch (1961) and was developed
by Andersen (1970). See also Magnac (2004), who characterized other situa-
tions in which the total scores are sufficient statistics for the individual-specific
intercepts.

Among the first authors to deal with the conditional approach for the dy-
namic logit model (γ is unconstrained) were Cox (1958) and Chamberlain
(1985). In particular, the latter noticed that when T = 3 and the covariates
are omitted from the model, p(yi|αi� yi0� yi1 + yi2 = 1� yi3) does not depend on
αi for every yi0 and yi3. On the basis of this conditional distribution, it is there-
fore possible to construct a likelihood function which depends on the response
configurations of only certain subjects (those such that yi1 + yi2 = 1), and which
allows us to identify and consistently estimate the parameter γ.

The approach of Chamberlain (1985) was extended by Honoré and Kyri-
azidou (2000) to the case where, as in (2), the model includes exogenous co-
variates. In particular, when these covariates are continuous, they proposed
to estimate the vector θ of structural parameters by maximizing a weighted
conditional log-likelihood with weights depending on the individual covariates
through a kernel function which must be defined in advance.

Although the weighted conditional approach of Honoré and Kyriazidou
(2000) is of great interest, their results about identification and consistency are
based on certain assumptions on the support of the covariates which rule out,
for instance, time dummies. Moreover, the approach requires careful choice of
the kernel function and of its bandwidth, since these choices affect the perfor-
mance of their estimator. Furthermore, the estimator is consistent as n → ∞,
but its rate of convergence to the true parameter value is slower than

√
n, un-

less only discrete covariates are present. See also Magnac (2004) and Honoré
and Tamer (2006).

Even though it is not strictly related to the conditional approach, it is worth
mentioning that a recent line of research investigated dynamic discrete choice
models with fixed-effects proposing bias corrected estimators (see Hahn and
Newey (2004), Carro (2007)). Although these estimators are only consistent
when the number of time periods goes to infinity, they have a reduced order of
the bias without increasing the asymptotic variance. Monte Carlo simulations
have shown their good finite-sample performance in comparison to the esti-
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mator of Honoré and Kyriazidou (2000) even with not very long panels (e.g.,
seven time periods).

3. PROPOSED MODEL FOR BINARY PANEL DATA

In this section, we introduce a quadratic exponential model for binary panel
data and we discuss its main features in comparison to the dynamic logit
model.

3.1. Basic Assumptions

We assume that

p(yi|αi�Xi� yi0)(4)

=
exp

[
yi+αi +

∑
t

yitx′
itβ1 + yiT (φ+ x′

iTβ2)+ yi∗γ
]

∑
z

exp
[
z+αi +

∑
t

ztx′
itβ1 + zT (φ+ x′

iTβ2)+ zi∗γ
] �

where the sum
∑

z ranges over all possible binary response vectors z =
(z1� � � � � zT )

′; moreover, z+ = ∑
t zt and zi∗ = yi0z1 + ∑

t>1 zt−1zt . The denom-
inator does not depend on yi; it is simply a normalizing constant that we denote
by μ(αi�Xi� yi0). The model can be viewed as a version of the quadratic expo-
nential model of Cox (1972) with covariates in which the first-order effect for
yit is equal to αi +x′

itβ1 (to which we add φ+x′
itβ2 when t = T ) and the second-

order effect for (yis� yit) is equal to γ when t = s + 1 and equal to 0 otherwise.
The need for a different parametrization of the first-order effect when t = T
and t < T will be clarified below.

It is worth noting that the expression for the probability of yi given in (4)
closely resembles that given in (3) which results from the dynamic logit model.
From some simple algebra, we also obtain that

log
p(yit = 0|αi�Xi� yi�t−1 = 0)p(yit = 1|αi�Xi� yi�t−1 = 1)
p(yit = 0|αi�Xi� yi�t−1 = 1)p(yit = 1|αi�Xi� yi�t−1 = 0)

= γ

for every i and t. Then, under the proposed quadratic exponential model, γ
has the same interpretation that it has under the dynamic logit model, that is,
log-odds ratio between each pair of consecutive response variables. Not sur-
prisingly, the dynamic logit model coincides with the proposed model in the
absence of state dependence (γ = 0).2

2It is also possible to show that, up to a correction term, expression (4) is an approximation of
that in (3) obtained by a first-order Taylor expansion around αi = 0, β = 0, and γ = 0.
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The main difference with respect to the dynamic logit is in the resulting con-
ditional distribution of yit given the available covariates Xi and yi0� � � � � yi�t−1. In
fact, (4) implies that

p(yit|αi�Xi� yi0� � � � � yi�t−1)(5)

= exp{yit[αi + x′
itβ1 + yi�t−1γ + e∗

t (αi�Xi)]}
1 + exp[αi + x′

itβ1 + yi�t−1γ + e∗
t (αi�Xi)] �

where, for t < T ,

e∗
t (αi�Xi) = log

1 + exp[αi + x′
i�t+1β1 + e∗

t+1(αi�Xi)+ γ]
1 + exp[αi + x′

i�t+1β1 + e∗
t+1(αi�Xi)](6)

= log
p(yi�t+1 = 0|αi�Xi� yit = 0)
p(yi�t+1 = 0|αi�Xi� yit = 1)

and

e∗
T (αi�Xi)= φ+ x′

iTβ2�(7)

Then, for t = T , the proposed model is equivalent to a dynamic logit model
with a suitable parametrization. The interpretation of this correction term
will be discussed in detail in Section 3.2. For the moment, it is important to
note that the conditional probability depends on present and future covari-
ates, meaning that these covariates are not strictly exogenous (see Wooldridge
(2001, Sec. 15.8.2)). The relation between the covariates and the feedback of
the response variables vanishes when γ = 0. Consider also that, for t < T , the
same Taylor expansion mentioned in footnote 2 leads to e∗

t (αi�Xi)≈ 0�5γ. Un-
der this approximation, p(yit|αi�Xi� yi0� � � � � yi�t−1) does not depend on the fu-
ture covariates and these covariates can be considered strictly exogenous in an
approximate sense.

In the simpler case without covariates, the conditional probability of yit be-
comes

p(yit|αi� yi0� � � � � yi�t−1)

= exp{yit[αi + yi�t−1γ + e∗
t (αi)]}

1 + exp[αi + yi�t−1γ + e∗
t (αi)] � t = 1� � � � �T − 1�

whereas, for the last period, we have the logistic parametrization

p(yiT |αi� yi0� � � � � yi�T−1)= exp[yiT (αi + yi�T−1γ)]
1 + exp(αi + yi�T−1γ)

�

where

e∗
t (αi)= log

p(yi�t+1 = 0|αi� yit = 0)
p(yi�t+1 = 0|αi� yit = 1)

�
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which is 0 only in the absence of state dependence.
Finally, we have to clarify that the possibility to use quadratic exponential

models for panel data is already known in the statistical literature; see Dig-
gle, Heagerty, Liang, and Zeger (2002) and Molenberghs and Verbeke (2004).
However, the parametrization adopted in this type of literature, which is dif-
ferent from the one we propose, is sometimes criticized for lack of a simple
interpretation. In contrast, for our parametrization, we provide a justification
as a latent index model.

3.2. Model Justification and Related Issues

Expression (5) implies that the proposed model is equivalent to the latent
index model

yit = 1{y∗
it ≥ 0}� y∗

it = αi + x′
itβ1 + yi�t−1γ + e∗

t (αi�Xi)+ εit�(8)

where the error terms εit are independent and have standard logistic distrib-
ution. Assumption (8) is similar to assumption (1) on which the dynamic logit
model is based, the main difference being in the correction term e∗

t (αi�Xi). As
is clear from (6), this term can be interpreted as a measure of the effect of the
present choice yit on the expected utility (or propensity) at the next occasion
(t + 1). In the presence of positive state dependence (γ > 0), this correction
term is positive, since making the choice today has a positive impact on the
expected utility. Also note that the different definition of e∗

t (αi�Xi) for t < T
and t = T (compare equations (6) and (7)) is motivated by considering that
e∗
T (αi�Xi) has an unspecified form, because it would depend on future covari-

ates not in Xi; then we assume this term to be equal to a linear form of the
covariates xiT , in a way similar to that suggested by Heckman (1981c) to deal
with the initial condition problem.

As suggested by a referee, it is possible to justify formulation (8), which in-
volves the correction term for the expectation, on the basis of an extension of
the job search model described by Hyslop (1999). The latter is based on the
maximization of a discounted utility and relies on a budget constraint in which
search costs are considered only for subjects who did not participate in the la-
bor market in the previous year. In our extension, subjects who decide to not
participate in the current year save an amount of these costs for the next year,
but benefit from the amounts previously saved according to the same rule. The
reservation wage is then modified so that the decision to participate depends
on future expectation about the participation state, beyond the past state. This
motivates the introduction of the correction term e∗

t (αi�Xi) in (8), which ac-
counts for the difference between the behavior of a subject who has a budget
constraint including expectation about future search costs and a subject who
has a budget constraint that does not include this expectation.
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Two issues that are worth discussing so as to complete the description of the
properties of the model are (i) model consistency with respect to marginaliza-
tions over a subset of the response variables and (ii) how to avoid assumption
(7) on the last correction term.

Assume that (4) holds for the T response variables in yi. For the subsequence
of responses y(T−1)

i , where in general y(t)i = (yi1� � � � � yit)
′, we have

p
(
y(T−1)
i |αi�Xi� yi0

)
= exp

[∑
t<T

yit(αi + x′
itβ1)+

∑
t<T

yi�t−1yitγ

]

× [1 + exp(φ+ x′
iTδ+ yi�T−1γ)]/μ(αi�Xi� yi0)

with δ = β1 +β2. After some algebra, this expression can be reformulated as

p
(
y(T−1)
i |αi�Xi� yi0

)
(9)

=
exp

[∑
t<T

yit(αi + x′
itβ1)+

∑
t<T

yi�t−1yitγ + yi�T−1eT−1(αi�Xi)

]
μT−1(αi�Xi� yi0)

with

eT−1(αi�Xi)= log
1 + exp(φ+ x′

iTδ+ γ)

1 + exp(φ+ x′
iTδ)

and μT−1(αi�X� yi0) denoting the normalizing constant, which is equal to the
sum of the numerator of (9) for all possible configurations of the first T − 1
response variables. Note that eT−1(αi�Xi) has an interpretation similar to the
correction term e∗

T−1(αi�Xi) for the future expectation which is defined above.
When γ = 0, eT−1(αi�Xi) = 0 and then p(y(T−1)

i |αi�Xi� yi0) = p(y(T−1)
i |αi�

X(T−1)
i � yi0) with X(t)

i = (xi1 · · · xit ). The latter probability can be expressed
as in (4) and model consistency with respect to marginalization exactly holds.
In the other cases, this form of consistency approximately holds, in the sense
that by substituting eT−1(αi�Xi) with its linear approximation, we obtain a dis-
tribution p(y(T−1)

i |αi�X(T−1)
i � yi0) which can be cast into (4). This argument can

be iterated to show that, at least approximately, model consistency holds with
respect to marginalizations over an arbitrary number of response variables3; in
this case, the distribution of interest is p(y(t)i |αi�X(t)

i � yi0) with t smaller than
T − 1.

3Simulation results (see the Supplemental Material file) show that, for different values of γ,
the bias of the conditional estimator of the structural parameters is negligible and is comparable
to that resulting from computing these estimators on the complete data sequence.
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Finally, assumption (7) on the last correction term e∗
T (αi�Xi) can be avoided

by conditioning the joint distribution on the corresponding outcome yiT . This
removes this correction term since we have

p(yi1� � � � � yiT−1|αi�Xi� yi0� yiT )

=
exp

[∑
t<T

yitαi +
∑
t<T

yitx′
itβ1 + yi∗γ

]
μT−1(αi�Xi� yi0� yiT )

�

This conditional version of the proposed model also has the advantage of be-
ing consistent across T . However, it would need at least three observations
(beyond the initial one) to make the model parameters identifiable. Moreover,
the conditional estimator becomes less efficient with respect to the same esti-
mator applied to the initial model.

3.3. Conditional Distribution Given the Total Score

The main advantage of the proposed model with respect to the dynamic logit
model is that the total scores yi+, i = 1� � � � � n, represent a set of sufficient sta-
tistics for the incidental parameters αi. This is because, for every i, yi is condi-
tionally independent of αi given Xi, yi0, and yi+.

First of all, note that, under assumption (4),

p(yi+|αi�Xi� yi0)

=
∑
z(yi+)

p(yi = z|αi�Xi� yi0)

= exp(yi+αi)

μ(αi�Xi� yi0)

∑
z(yi+)

exp
[∑

t

ztx′
itβ1 + zT (φ+ x′

iTβ2)+ zi∗γ
]
�

where the sum
∑

z(yi+) is restricted to all response configurations z such
that z+ = yi+. After some algebra, the conditional distribution at issue be-
comes

p(yi|αi�Xi� yi0� yi+) = p(yi|αi�Xi� yi0)

p(yi+|αi�Xi� yi0)
(10)

=
exp

[∑
t

yitx′
itβ1 + yT (φ+ x′

iTβ2)+ yi∗γ
]

∑
z(yi+)

exp
[∑

t

ztx′
itβ1 + zT (φ+ x′

iTβ2)+ zi∗γ
] �
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The expression above does not depend on αi and, therefore, is also denoted by
p(yi|Xi� yi0� yi+). The same circumstance happens for the elements of β1 that
correspond to the covariates which are time constant. To make this clearer,
consider that we can divide the numerator and the denominator of (10) by
exp(yi+x′

i1β1) and, after rearranging terms, we obtain

p(yi|Xi� yi0� yi+)=
exp

[∑
t>1

yitd′
itβ1 + yiT (φ+ x′

iTβ2)+ yi∗γ
]

∑
z(yi+)

exp
[∑

t>1

ztd′
itβ1 + zT (φ+ x′

iTβ2)+ zi∗γ
](11)

with dit = xit − xi1, t = 2� � � � �T . We consequently assume that β1 does
not include any intercept common to all time occasions and regression
parameters for covariates which are time constant; if these parameters
are included, they would not be identified. This is typical of other condi-
tional approaches, such as that of Honoré and Kyriazidou (2000), and of
fixed-effects approaches in which the individual intercepts are estimated
together with the structural parameters. Similarly, β2 must not contain
any intercept for the last occasion, since this is already included through
φ.

4. CONDITIONAL INFERENCE ON THE STRUCTURAL PARAMETERS

In the following discussion, we introduce a conditional likelihood based on
(11). We also provide formal arguments on the identification of the structural
parameters via this function and on the asymptotic properties of the estimator
that results from its maximization.

4.1. Structural Parameters Identification via Conditional Likelihood

For an observed sample (Xi� yi0� yi), i = 1� � � � � n, the conditional likelihood
has logarithm

�(θ)=
∑
i

1{0 < yi+ < T } log[pθ(yi|Xi� yi0� yi+)]�(12)

where the subscript θ has been added to p(·|·) to indicate that this prob-
ability, which is defined in (11), depends on θ. Note that in this case θ =
(β′

1�β
′
2�φ�γ)′. Also note that the response configurations yi with sum 0 or T

are removed since these do not contain information on θ.
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To obtain a simple expression for the score and the information matrix cor-
responding to �(θ), consider that (11) may be expressed in the canonical expo-
nential family form as

pθ(yi|Xi� yi0� yi+)= exp[u(yi0� yi)′A(Xi)
′θ]∑

z(yi+)

exp[u(yi0� z)′A(Xi)
′θ]

�

where u(yi0� yi) = (yi2� � � � � yiT � yi∗)′ and

A(Xi) =

⎛
⎜⎜⎝

di2 · · · di�T−1 diT 0
0 · · · 0 xiT 0
0 · · · 0 1 0
0 · · · 0 0 1

⎞
⎟⎟⎠ �

with 0 denoting a column vector of zeros of suitable dimension. From stan-
dard results on exponential family distributions (Barndorff-Nielsen (1978,
Chap. 8)), it is easy to obtain

s(θ)= ∇θ�(θ)=
∑
i

1{0 < yi+ < T }A(Xi)vθ(Xi� yi0� yi)�

J(θ)= −∇θθ�(θ)=
∑
i

1{0 < yi+ < T }A(Xi)Vθ(Xi� yi0� yi+)A(Xi)
′�

where

vθ(Xi� yi0� yi) = u(yi0� yi)−Eθ[u(yi0� yi)|Xi� yi0� yi+]�
Vθ(Xi� yi0� yi+)= Vθ[u(yi0� yi)|Xi� yi0� yi+]�

Suppose now that the subjects in the samples are independent of each other
with αi, Xi, yi0, and yi drawn, for i = 1� � � � � n, from the true model

f0(α�X� y0� y)= f0(α�X� y0)p0(y|α�X� y0)�(13)

where f0(α�X� y0) denotes the joint distribution of the individual-specific in-
tercept, the covariates X = (x1 · · · xT ), and the initial observation y0. Fur-
thermore, p0(y|α�X� y0) denotes the conditional distribution of the response
variables under the quadratic exponential model (4) when θ = θ0, with θ0 de-
noting the true value of its structural parameters. Under this assumption, we
have that Q̂(θ) = �(θ)/n converges in probability to Q0(θ) = E0[�(θ)/n] =
E0{log[pθ(y|X� y0� y+)]} for any θ, where E0(·) denotes the expected value un-
der the true model.

By simple algebra, it is possible to show that the first derivative ∇θQ(θ) is
equal to 0 at θ = θ0 and that, provided E0[A(X)A(X)′] is of full rank, the sec-
ond derivative matrix ∇θθQ(θ) is always negative definite. This implies that
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Q0(θ) is strictly concave with its only maximum at θ = θ0 and, therefore, the
vector of structural parameters is identified.

Note that the regularity condition that E0[A(X)A(X)′] is of full rank, nec-
essary to ensure that ∇θθQ(θ) is negative definite, rules out cases of time-
constant covariates (see also the discussion in Section 3.3). It is also worth
noting that the structural parameters of the model are identified with T ≥ 2,
whereas identification of the structural parameters of the dynamic logit model
is only possible when T ≥ 3 (Chamberlain (1993)). See also the discussion pro-
vided by Honoré and Tamer (2006).

4.2. Conditional Maximum Likelihood Estimator

The conditional maximum likelihood estimator of θ, denoted by θ̂ =
(β̂′

1� β̂
′
2� φ̂� γ̂)

′, is obtained by maximizing the conditional log-likelihood �(θ).
This maximum may be found by a simple iterative algorithm of Newton–
Raphson type. At the hth step, this algorithm updates the estimate of θ at
the previous step, θ(h−1), as θ(h) = θ(h−1) + J(θ(h−1))−1s(θ(h−1)).

Note that the information matrix J(θ) is always nonnegative definite since it
corresponds to the sum of a series of variance–covariance matrices. Provided
E0[A(X)A(X)′] is of full rank, J(θ) is also positive definite with probability ap-
proaching 1 as n → ∞. Then we can reasonably expect that �(θ) is strictly con-
cave and has its unique maximum at θ̂ in most economic applications, where
the sample size is usually large. Since we also have that the parameter space is
equal to R

k, with k denoting the dimension of θ, the above algorithm is very
simple to implement and usually converges in a few steps to θ̂, regardless of
the starting value θ(0).

Under the true model (13), and provided that E0[A(X)A(X)′] exists and is
of full rank, we have that θ̂ exists, is a

√
n-consistent estimator of θ0, and has

asymptotic Normal distribution as n → ∞. This results may be proved on the
basis of standard asymptotic results (cf. Theorems 2.7 and 3.1 of Newey and
McFadden (1994)).

From Newey and McFadden (1994, Sec. 4.2), we also derive that the standard
errors for the elements of θ̂ can be obtained as the corresponding diagonal
elements of (Ĵ)−1 under square root. Note that Ĵ is obtained as a by-product
from the Newton–Raphson algorithm described above. These standard errors
can be used to construct confidence intervals for the parameters and to test
hypotheses on them in the usual way.

To study the finite-sample properties of the conditional estimator, we per-
formed a simulation study (for a detailed description, see the Supplemental
Material file) that closely follows the one performed by Honoré and Kyriazi-
dou (2000). In particular, we first considered a benchmark design under which
samples of different size are generated from the quadratic exponential model
(4) for 3 and 7 time occasions, only one covariate generated from a Normal
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distribution, and different values of γ between 0.25 and 2. As in Honoré and
Kyriazidou (2000), we also considered other scenarios based on more sophisti-
cated designs for the regressors. Under each scenario, we generated a suitable
number of samples and, for every sample, we computed the proposed condi-
tional estimator, whose property were mainly evaluated in terms of median
bias and median absolute error (MAE). We also computed the corresponding
standard errors and obtained confidence intervals with different levels for each
structural parameter.

On the basis of the simulation study, we conclude that, for each structural
parameter, the bias of the conditional estimator is always negligible (with the
exception of the estimator γ̂ when n is small); this bias tends to increase with γ,
to decrease with n, and to decrease very quickly with T . Similarly, we observe
that the MAE decreases with n at a rate close to

√
n and much faster with T .

This depends on the fact that the number of observations that contribute to
the conditional likelihood increases more than proportionally with T , as an in-
crease of T also determines an increase of the actual sample size.4 Moreover,
the MAE of the estimator of each parameter increases with γ. This is mainly
due to the fact that when γ is positive, its increase implies a decrease of the ac-
tual sample size. The simulation results also show that the confidence intervals
based on the conditional estimator attain the nominal level for each parame-
ter. This confirms the validity of the rule to compute standard errors based on
the information matrix Ĵ.

Given the same interpretation of the parameters of the quadratic exponen-
tial and the dynamic logit models, it is quite natural to compare the proposed
conditional estimator with available estimators of the parameters of the lat-
ter model. In particular, the results of our simulation study can be compared
with those of Honoré and Kyriazidou (2000). It emerges that our estimator
performs better than their estimator in terms of both bias and efficiency. This
is mainly due to the fact that the former exploits a larger number of response
configurations with respect to the latter. Similarly, our estimator can be com-
pared with the bias corrected estimator proposed by Carro (2007). In this case,
we observe that the former performs much better than the latter when the pa-
rameter of interest is γ, whereas our estimator performs slightly worse than
that of Carro (2007) when the parameters of interest are those in β1. How-
ever, when considering these conclusions, one must be conscious that the re-
sults compared here derive from simulation studies performed under different,
although very similar, models.
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Abstract

We propose a test for state dependence in binary panel data with individual covariates.

For this aim, we rely on a quadratic exponential model in which the association between

the response variables is accounted for in a different way with respect to more standard

formulations. The level of association is measured by a single parameter that may be

estimated by a Conditional Maximum Likelihood (CML) approach. Under the dynamic

logit model, the conditional estimator of this parameter converges to zero when the

hypothesis of absence of state dependence is true. This allows us to implement a t-test for

this hypothesis which may be very simply performed and attains the nominal significance

level under several structures of the individual covariates. Through an extensive simulation

study, we find that our test has good finite sample properties and it is more robust to

the presence of (autocorrelated) covariates in the model specification in comparison with

other existing testing procedures for state dependence. The proposed approach is illustrated

by two empirical applications: the first is based on data coming from the Panel Study of

Income Dynamics and concerns employment and fertility; the second is based on the Health

and Retirement Study and concerns the self reported health status.
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1. INTRODUCTION

In the analysis of panel data, a question of main interest is whether the choice (or the

condition) of an individual in the current period may influence his/her future choice

(or condition), either directly (via the so–called “true state dependence”) or through the

presence of unobserved time-invariant heterogeneity; see Feller (1943) and Heckman (1981).

Different policy consequences may derive from disentangling the individual unobserved

heterogeneity from the true state dependence, where idiosyncratic shocks may last for a

long time. In the case of binary panel data, a very relevant model in which these effects are

disentangled is the dynamic logit model (for a review, see Hsiao, 2005, ch. 7). This model

includes individual-specific intercepts and, further to time-constant and/or time-varying

individual covariates, the lagged response variable. In particular, the regression coefficient

for the lagged response is a measure of the true state dependence.

The problem of modeling and testing for state dependence arises in many microeconomic

applications dealing with labor market participation (Heckman and Borjas, 1980; Hyslop,

1999), transitions in and out of poverty (Cappellari and Jenkins, 2004; Biewen, 2009), and

self-assessed health condition (Halliday, 2008; Heiss, 2011); lately, the problem of modeling

state dependence has been raised in applications concerning migrants remittances (Bettin

and Lucchetti, 2012), households financial distress (Brown et al., 2012; Giarda, 2013), and

firms’ access to credit (Pigini et al., 2014).
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A drawback of the dynamic logit model, with respect to the static logit model that does

not include the lagged response among the covariates, is that simple sufficient statistics do

not exist for the individual-specific intercepts. Therefore, conditional likelihood inference

becomes more complex and may be performed only under certain conditions on the

distribution of the covariates (Chamberlain, 1993; Honoré and Kyriazidou, 2000). We

recall that the main advantage of this approach, as other fixed-effects approaches, is that

it does not require to formulate any assumption on the distribution of the individual

intercepts and on the correlation between these effects and the covariates; assumptions of

this type are instead required within the random-effects approach.

In order to test for (true) state dependence, Halliday (2007) found an identification

condition for the case of two time periods (further to an initial observation). Nevertheless

this result cannot be easily applied with longer panel settings and it does not explicitly

allow for individual covariates. In particular, when covariates are present, they can be

accounted for only by splitting the overall sample in strata corresponding to different

configurations of these covariates, but this makes the procedure more complex and its

results depending on arbitrary choices. At least to our knowledge, no other approaches

having a complexity comparable to that of Halliday (2007) exist in the literature for testing

for state dependence.

In this paper, we propose a test for state dependence based on a modified version of the

quadratic exponential model of Bartolucci and Nigro (2010), which relies on a different
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formulation of the structure regarding the conditional association between the response

variables given the individual-specific intercepts for the unobserved heterogeneity and the

covariates. We show that the proposed model may be still represented as a latent index

model where the errors are logistically distributed and the systematic part is formulated

in terms of future expectations. This model may be estimated in a simple way by a

Conditional Maximum Likelihood (CML) approach based on the same sufficient statistics

as for the original quadratic exponential model. Moreover, we show that, when data are

generated from the dynamic logit model, the estimator of the parameter measuring the

association between the response variables converges to zero in absence of state dependence

even in the presence of covariates. It is then natural to test for state dependence on the

basis of the proposed quadratic exponential model by a t-statistic.

The test we propose is directly comparable with both the one based on Bartolucci and

Nigro (2010) model and the one of Halliday (2007) in terms of simplicity of implementation.

Differently from the first, our test is more powerful as it uses a larger set of information.

With respect to the second test, it is unbiased and has more power in the presence of

individual covariates and for panel settings of length greater than two. In addition, we show

that, in the special case of two time periods and no individual covariates, the procedure

we propose here and that proposed by Halliday (2007) employ the same information in

the data to test for state dependence. These properties are confirmed by a deep simulation

study. This study also shows that our test has a certain degree of robustness with respect

to distributional misspecification of the error terms. We also extend the proposed test to
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accommodate for predetermined covariates in the model specification by a simple two-step

procedure based on a weighting function, modeling the process of these covariates.

With the aim of illustrating the proposed test, we consider two applications. The first is

about the relationship between employment and fertility and is based on a data about

a sample of women which derives from the Panel Study of Income Dynamics (PSID),

public use dataset.1 The purpose is to verify, by the proposed test, well-known results on

state dependence in employment and fertility (Hyslop, 1999; Carrasco, 2001; Bartolucci

and Farcomeni, 2009). In the second application, we test for state dependence in the

Self Reported Health Status (SRHS) using data from the Health and Retirement Study

(HRS). In particular this second application is based on RAND HRS Data, Version N.2

Using these data, Heiss (2011) found that past SRHS has a positive predictive power

for the current health condition. With this example, we provide further evidence on the

state dependence effect in perceived health, in addition to the cases recently analyzed by

Halliday (2008) with PSID data, and by Carro and Traferri (2012) with data coming from

the British Household Panel Survey.

1Produced and distributed by the Survey Research Center, Institute for Social Research,

University of Michigan, Ann Arbor, MI (2005); see http://psidonline.isr.umich.edu.

2Produced by the RAND Center for the Study of Aging, with funding from the National

Institute on Aging and the Social Security Administration. Santa Monica, CA (September

2014); see http://www.rand.org/about.html.
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The paper is organized as follows. In Section 2 we describe the dynamic logit model

and the alternative quadratic exponential model of Bartolucci and Nigro (2010); for the

purpose of our comparison, in the same section we also illustrate Halliday (2007)’s testing

approach. In Section 3 we introduce the proposed t-test for state dependence based on

a new formulation of the quadratic exponential model. The empirical size and the power

of this test are studied by simulation in Section 4. Finally, in Section 5 we provide two

empirical illustrations based on the PSID and HRS datasets. In the last section we draw

the main conclusions.

We make available to the reader our R implementation of all the algorithms illustrated

in this paper, and in particular of the algorithm to perform the proposed test for state

dependence.3 Moreover, we make available the Stata module CQUAD (“CQUAD: Stata

module to perform conditional maximum likelihood estimation of quadratic exponential

models”).4

2. PRELIMINARIES

For a panel of n subjects observed at T time occasions, let yit denote the binary response

variable for subject i at occasion t and let xit denote the corresponding vector of individual

covariates. Also let yi = �yi1� � � � � yiT �′ denote the vector of all outcomes for subject i

3R package downloadable from http://cran.r-project.org/web/packages/cquad/index.html

4The Stata module CQUAD is downloadable from http://ideas.repec.org/c/boc/bocode/

s457891.html
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and Xi = �xi1 · · · xiT � denote the matrix of all covariates for this subject that are initially

assumed to be strictly exogenous.

In the following, we briefly review the dynamic logit model for these data and then the

quadratic exponential model as an alternative model that includes a state dependence

parameter (Bartolucci and Nigro, 2010). We also review the test for state dependence

proposed by Halliday (2007).

2.1. Dynamic Logit Model

The dynamic logit model assumes that, for i = 1� � � � � n and t = 1� � � � � T , the binary

response yit has conditional distribution

p�yit � �i� Xi� yi0� � � � � yi�t−1� = p�yit � �i� xit� yi�t−1�� (1)

with probability function

p�yit � �i� xit� yi�t−1� = exp�yit��i + x′
it� + yi�t−1��	

1 + exp��i + x′
it� + yi�t−1��

� (2)

where � and � are the parameters of interest and the individual-specific intercepts �i are

often considered as nuisance parameters; moreover, the initial observation yi0 is considered

as given. Therefore, the joint probability of yi given �i, Xi, and yi0 has expression

p�yi � �i� Xi� yi0� = ∏
t

p�yit � �i� xit� yi�t−1� = exp�yi+�i +∑
t yitx

′
it� + yi∗��∏

t�1 + exp��i + x′
it� + yi�t−1��	

� (3)
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where yi+ = ∑
t yit and yi∗ = ∑

t yi�t−1yit, with the product
∏

t and the sum
∑

t ranging over

t = 1� � � � � T .

It is important to stress that � measures the effect of the true state dependence and then the

hypothesis on which we focus is H0 
 � = 0, meaning absence of this form of dependence.

The parameter � may be identified and consistently estimated if the �i parameters are

properly taken into account. In particular, Chamberlain (1985) showed that a conditional

approach, in the case of no covariates, may identify the state dependence parameter by

using suitable sufficient statistics for the �i parameters.

Honoré and Kyriazidou (2000) extended the conditional estimator of Chamberlain (1985)

to allow for exogenous covariates in the model. Under particular conditions on the support

of the covariates, they showed that, for T = 3, yi is conditionally independent of �i given the

initial and final observations of the response variable and that yi1 + yi2 = 1. Their estimator

has the advantage, as in any fixed-effects estimator, to let �i be freely correlated with the

covariates in Xi and to avoid any parametric assumption on the distribution of these effects.

The approach relies on a weight that is attached to each observation; this weight depends

on the covariates through a kernel function which reduces the rate of convergence of the

estimator, which is slower than
√

n. Also due to this condition, the sample size substantially

shrinks, lowering the overall efficiency of the estimator. Moreover, this approach does not

allow for time-dummies or trend variables and may be applied only with T > 2, beyond the

initial observation.
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A different fixed-effects approach is based on bias corrected estimators; see Hahn and

Newey (2004), Carro (2007), Fernandez-Val (2009), Hahn and Kuersteiner (2011), and

Bartolucci et al. (2014b). These estimators are only consistent as T → � but have a reduced

order of bias and they remain asymptotically efficient. For this reason, these estimators

perform well also in quite short panels.

2.2. Quadratic Exponential Model

The quadratic exponential model directly defines the joint probability of yi given Xi and

yi0, and also given an individual-specific effect here denoted by �i, as follows:

p�yi � �i� Xi� yi0� = exp�yi+�i +∑
t yitx

′
it� + yi∗��∑

z exp�z+�i +∑
t ztx

′
it� + zi∗��

� (4)

where the sum
∑

z ranges over all the possible binary response vectors z = �z1� � � � � zT �′,

z+ = ∑
t zt, and zi∗ = yi0z1 +∑

t>1 zt−1zt. For instance, with T = 2, the possible vectors z are

�0� 0�, �0� 1�, �1� 0�, and �1� 1�, corresponding to z+ = 0� 1� 1� 2 and zi∗ = 0� 0� yi0� 1 + yi0,

respectively. We refer to this model as QE1. Here we use a different notation from that

used for the dynamic logit model, where the vector of regression coefficients is denoted by

� and the state dependence parameter by �. These parameters are collected in the vector

� = ��′� ��′.

Model QE1 is a special case of that proposed by Bartolucci and Nigro (2010) with the

parameters � assumed to be equal for all time occasions.5 The same results of their paper

5Bartolucci and Nigro (2010) used a different parametrization for t = T in order to

approximate the probability in the last time period, where future covariates cannot be

observed.
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apply straight to model (4); therefore, the conditional probability of yit may be represented

as a latent index logistic model where

p�yit � �i� Xi� yi0� � � � � yi�t−1� = expyit��i + x′
it� + yi�t−1� + et��i� Xi�	�

1 + exp��i + x′
it� + yi�t−1� + et��i� Xi�	

�

where, for t = 1� � � � � T − 1 we have

et��i� Xi� = log
1 + exp��i + x′

i�t+1� + et+1��i� Xi� + �	

1 + exp��i + x′
i�t+1� + et+1��i� Xi�	

= log
p�yi�t+1 = 0 � �i� Xi� yit = 0�

p�yi�t+1 = 0 � �i� Xi� yit = 1�
�

with

eT ��i� Xi� = 1�

Furthermore, the quadratic exponential model shares with the dynamic logit the same

interpretation of the state dependence parameter as log-odds ratio between any pair of

response variables (yi�t−1� yit); moreover, yit is conditionally independent of any other

response variable given yi�t−1 and yi�t+1. Actually, when � = 0 this model coincides with the

static logit model, and this is an important point for the approach here proposed.

The main advantage of model QE1 defined above is the availability of simple sufficient

statistics for the unobserved heterogeneity parameters. In particular, the sufficient statistic

for each parameter �i is yi+. Therefore, a
√

n-consistent estimator �̂ = ��̂′� �̂�′ may be

obtained by maximizing the conditional likelihood through a Newton-Raphson algorithm.

Moreover, differently from Honoré and Kyriazidou (2000), it allows for time-dummies and

can be used even with T = 2.
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Bartolucci and Nigro (2012) also showed that, up to a correction term, a quadratic

exponential model of the type above may sharply approximate the dynamic logit model.

On the basis of this result they derived a Pseudo CML estimator (PCML) which is very

competitive in terms of efficiency compared with the other estimators proposed in the

econometric literature.

2.3. Available Test for State Dependence

Halliday (2007) proposed a test for state dependence allowing for the presence of aggregate

time variables in a dynamic logit model based on assumptions (1) and (2). The proposed

approach, which follows the lines of the conditional approach of Chamberlain (1985), is

based on the construction of conditional probability inequalities that depend only on the

sign of the state dependence parameter �.

In the case of T = 2, Halliday (2007) considered the events Ai1 = yi0 = 1� yi1 = 1� yi2 = 0�

and Bi1 = yi0 = 0� yi1 = 1� yi2 = 0� and he proved that

p�Ai1 � Xi� yi0 = 1� yi+ = 1� ≥ p�Bi1 � Xi� yi0 = 0� yi+ = 1� for � ≥ 0

and

p�Ai1 � Xi� yi0 = 1� yi+ = 1� ≤ p�Bi1 � Xi� yi0 = 0� yi+ = 1� for � ≤ 0�

under assumption (1). When xi1 and xi2 are constant across subjects, and therefore there

are only time-dummies common to all sample units, it is possible to consistently estimate
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pA = p�Ai1 � Xi� yi0 = 1� yi+ = 1� and pB = p�Bi1 � Xi� yi0 = 0� yi+ = 1� as follows

p̂A =
∑

i 1Ai1 � Xi�∑
i 1yi+ = 1� yi0 = 1 � Xi�

= n110

m1
�

p̂B =
∑

i 1Bi1 � Xi�∑
i 1yi+ = 1� yi0 = 0 � Xi�

= n010

m0
�

where 1·� is the indicator function, ny0y1y2
is the frequency of sample units with response

configuration �y0� y1� y2�, and my0
= ny001 + ny010. The test statistic for H0 
 � = 0 is then

defined as

S = √
n

p̂A − p̂B

�̂�p̂A − p̂B�
� (5)

where �̂�p̂A − p̂B� is the estimated standard deviation of the numerator.

As the sample size grows to infinity, the distribution of the above test statistic converges to

a standard normal distribution only under H0; otherwise it diverges to +� or to −�, as n

grows to infinity, according to whether � > 0 or � < 0. It is worth noting that this statistic

exploits all the possible configurations of the response variable, conditionally on yi+ = 1; in

fact, after some simple algebra, the numerator of (5) may be written as

p̂A − p̂B = n001n110 − n101n010

m1m0
� (6)

The method of Halliday (2007) identifies the sign of the state dependence parameter without

estimating � and avoiding distributional assumptions on the unobserved heterogeneity

parameters. Nevertheless, this result cannot be easily generalized to T > 2. A possible

solution may be using a multiple testing technique (Hochberg and Tamhane, 1987), where
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tests for all possible triples �yi�t−1� yit� yi�t+1�, t = 1� � � � � T − 1, are combined together.

Furthermore, to take into account individual covariates that vary across individuals and/or

time occasions, the test must be performed for different configurations of the covariates.

Consequently, the results may depend on how the covariate configurations are grouped and

may give a final ambiguous solution.

3. A MODIFIED VERSION OF THE QUADRATIC EXPONENTIAL MODEL FOR

TESTING STATE DEPENDENCE

In the following, we first illustrate a modified version of the quadratic exponential model

QE1 outlined in Section 2.2 and then we discuss how to estimate its parameters. On the

basis of these estimates we introduce our test for state dependence.

3.1. Modified Quadratic Exponential Model

We introduce a different version of the quadratic exponential model (4), which is defined

as

p̃�yi � �i� Xi� yi0� = exp�yi+�i +∑
t yitx

′
it� + ỹi∗��∑

z exp�z+�i +∑
t ztx

′
it� + z̃i∗��

� (7)

where

ỹi∗ = ∑
t

1yit = yi�t−1��

z̃i∗ = 1z1 = yi0� +∑
t>1

1zt = zt−1��
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and we use p̃�· � ·� instead of p�· � ·� for the probability function in order to avoid confusion,

given that the two models use the same parameters; in particular, the parameters of interest

are still collected in the vector �.

The model based on expression (7) is referred to as QE2. The main difference between

models QE1 and QE2 is in how the association between the response variables is

formulated. In the latter, the structure is based on the statistic ỹi∗ that, differently from

yi∗, is equal to the number of consecutive pairs of outcomes which are equal each other,

regardless if they are 0 or 1. As already mentioned, this allows us to use a larger set of

information with respect to the initial model QE1 in testing for state dependence; this issue

will be discussed in more detail in the following.

Regarding the interpretation of model QE2, it is useful to consider how expression (7)

becomes after recursive marginalizations of the response variables in backward order. In

particular, for t = 1� � � � � T − 1, we have that

p̃�yi1� � � � � yit � Xi� yi0� = exp�
∑t

h=1yih�i +∑t
h=1yihx′

ih� +∑t
h=11yih = yi�h−1���g̃t�yit� �i� Xi�∑

z exp�z+�i +∑T
h=1 zhx′

ih� + z̃i∗��
�

where

g̃t�yit� �i� Xi� = g̃t+1�0� �i� Xi� exp��1 − yit��	 + g̃t+1�1� �i� Xi� exp��i + x′
i�t+1� + yit���
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with g̃T �yiT � �i� Xi� = 1. Consequently we have that

log
p̃�yi1� � � � � yi�t−1� yit = 1 � Xi� yi0�

p̃�yi1� � � � � yi�t−1� yit = 0 � Xi� yi0�
= �i + x′

it� + �2yi�t−1 − 1�� + ẽt��i� Xi��

where

ẽt��i� Xi� = log
g̃t�1� �i� Xi�

g̃t�0� �i� Xi�

= log
g̃t+1�0� �i� Xi� + g̃t+1�1� �i� Xi� exp��i + x′

i�t+1� + ��

g̃t+1�0� �i� Xi� exp��� + g̃t+1�1� �i� Xi� exp��i + x′
i�t+1��

= log
1 + exp��i + x′

i�t+1� + � + ẽt+1��i� Xi�	

1 + exp��i + x′
i�t+1� − � + ẽt+1��i� Xi�	

− �� (8)

for t = 1� � � � � T − 1, with ẽT ��i� Xi� = 0. This implies that

p̃�yiT � �i� Xi� yi�T−1� = expyT ��i + x′
iT� + �2yi�T−1 − 1��	�

1 + exp��i + x′
iT� + �2yi�T−1 − 1��	

� (9)

This expression may be seen as a reparametrization of the probability expression holding

under the dynamic logit model (1); in this regard, it is useful to recall that �2yi�t−1 − 1� is

simply equal to -1 for yi�t−1 = 0 and to 1 for yi�t−1 = 1. For t = 1� � � � � T − 1, instead, we

have

p̃�yit � �i� Xi� yi�t−1� = expyt��i + x′
it� + �2yi�t−1 − 1�� + ẽt��i� Xi�	�

1 + exp��i + x′
it� + �2yi�t−1 − 1�� + ẽt��i� Xi�	

� (10)

Regarding the last expression, first of all consider that for � = 0 definition (8) implies

that ẽt��i� Xi� = 0 and then we have again a reparametrization of the dynamic logit model.

Moreover, we have that

ẽt��i� Xi� = log
p̃�yi�t+1 = 0 � �i� Xi� yit = 0�

p̃�yi�t+1 = 0 � �i� Xi� yit = 1�
− ��
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which directly compares with the expression of et��i� Xi� given in Section 2.2 for model

QE1. This may easily be proved by recognizing that the numerator and the denominator in

(8) are equal to the inverse of p̃�yi�t+1 = 0 � �i� Xi� yit = 1� and p̃�yi�t+1 = 0 � �i� Xi� yit = 0�,

respectively, as defined in (9) and (10).

The above correction term depends on the data only through xi�t+1� � � � � xiT and has an

interpretation in terms of the probability of future choices similar to that of model QE1

and the quadratic exponential model of Bartolucci and Nigro (2010).

It may simply be proved model QE2 reproduces the same conditional independence

relations of the dynamic logit model between the response variable yit and yi0� � � � � yi�t−2,

yi�t+2� � � � � yiT , given �i, Xi, yi�t−1, and yi�t+1 (t = 2� � � � � T − 1). Finally, we have

log
p̃�yit = 1 � �i� Xi� yi�t−1 = 1�

p̃�yit = 0 � �i� Xi� yi�t−1 = 1�

p̃�yit = 0 � �i� Xi� yi�t−1 = 0�

p̃�yit = 1 � �i� Xi� yi�t−1 = 0�
= 2�� t = 1� � � � � T�

meaning that the log-odds ratio between every consecutive pair of response variables has

the same sign of � and it is equal to 0 if there is no state dependence.

3.2. Model Estimation

As for model QE1, the sums of the response variables at the individual level, yi+, i =
1� � � � � n, are sufficient statistics for the individual-specific intercepts �i. Conditioning on
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the sum of the response variables, we obtain for model QE2 the following conditional

probability function:

p̃�yi � Xi� yi0� yi+� = exp�
∑

t yitx
′
it� + ỹi∗��∑

z
z+=yi+ exp�
∑

t ztx
′
it� + z̃i∗��

� (11)

On the basis of expression (11), we obtain the conditional log-likelihood

�̃��� = ∑
i

10 < yi+ < T��̃i���� (12)

where

�̃i��� = log p̃�yi � Xi� yi0� yi+�

= ∑
t

yitx
′
it� + ỹi∗� − log

∑
z
z+=yi+

exp

(∑
t

ztx
′
it� + z̃i∗�

)
(13)

is the individual contribution to the conditional log-likelihood. Note that the response

configurations with yi+ equal to 0 or T do not contribute to this likelihood and then they

are not considered in (12).

Function �̃��� may be maximized by a Newton-Raphson algorithm in a similar way as for

model QE1, using the score vector and the information matrix reported below; see also

Bartolucci and Nigro (2010). In this regard, it is convenient to write

�̃i��� = ũ�Xi� yi0� yi�
′� − log

∑
z
z+=yi+

exp�ũ�Xi� yi0� z�′�	�
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with

ũ�Xi� yi0� yi� =
(∑

t

yitx
′
it� ỹi∗

)′
�

so that, using the standard theory about the regular exponential family, we have the

following expressions for the score for �̃���:

s̃��� = �� �̃��� = ∑
i

s̃i����

s̃i��� = ũ�Xi� yi0� yi� − Ẽ��ũ�Xi� yi0� yi� � Xi� yi0� yi+	�

Regarding the observed information matrix we have

J̃��� = −��� �̃��� = ∑
i

Ṽ��ũ�Xi� yi0� yi� � Xi� yi0� yi+	� (14)

In these expressions, Ẽ��ũ�Xi� yi0� yi� � Xi� yi0� yi+	 denotes the conditional expected value of

ũ�Xi� yi0� yi� given Xi and yi+ under model QE2, whereas the corresponding conditional

variance is denoted by Ṽ��ũ�Xi� yi0� yi� � Xi� yi0� yi+	. These are given by

Ẽ��ũ�Xi� yi0� yi� � Xi� yi0� yi+	 = ∑
z
z+=yi+

p̃�z � Xi� yi0� yi+�ũ�Xi� yi0� z�

Ṽ��ũ�Xi� yi0� yi� � Xi� yi0� yi+	 = ∑
z
z+=yi+

p̃�z � Xi� yi0� yi+�d̃�Xi� yi0� z�d̃�X� yi0� z�′�

with d̃�Xi� yi0� z� = ũ�Xi� yi0� z� − Ẽ��ũ�Xi� yi0� yi� � Xi� yi0� yi+	.

Note that J̃��� defined above is always non-negative definite since it corresponds to the sum

of a series of variance-covariance matrices and therefore �̃��� is always concave. Moreover,

a necessary condition for the information matrix J̃��� to be non-singular, and then for
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�̃��� to be strictly concave, is that time-constant covariates are ruled out, as happens in

any fixed-effect approach. The CML estimator of � based on the maximization of (12) is

denoted by �̃ = ��̃′� �̃�′.

3.3. Testing for State Dependence

Once the parameters of the proposed quadratic exponential model are estimated, it is

straightforward to construct a standard t-statistic for testing H0 
 � = 0, as follows:

W = �̃

se��̃�
� (15)

where se�·� is the standard error derived using the sandwich estimator of White (1982). In

particular, from the log-likelihood equation defined in (13), the variance-covariance matrix

of �̃ is estimated as

Ṽ��̃� = J̃��̃�−1H̃��̃��̃J��̃�−1	′�

where

H̃��� = ∑
i

10 < yi+ < T�s̃i���s̃i���′

and J̃��� is the information matrix defined in (14). Once the matrix Ṽ��̃� has been

computed as above, the standard error for �̃ may be obtained in the usual way from the

main diagonal of this matrix.
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It is worth noting that, under H0, the dynamic logit model corresponds to the proposed

quadratic exponential model QE2 when � = 0. In fact, when � = 0, expression (3) that

holds under the dynamic logit model simplifies to

p�yi � �i� Xi� yi0� = exp�yi+�i +∑
t yitx

′
it��∑

z exp�z+�i +∑
t ztx

′
it��

�

which coincides with that in (7) holding under the model QE2, with � = 0, � = �, and

�i = �i; the same obviously happens for model QE1. This implies the following main result.

Proposition 1. Under the dynamic logit model with strictly exogenous covariates based on

assumptions (1) and (2), if the null hypothesis H0 
 � = 0 holds, the test statistic W defined in

(15) has asymptotic standard normal distribution as n → �.

Moreover, if data are generated from the dynamic logit model but � 
= 0, then the value

of W is expected to diverge to +� or −� according to whether the true value of � is

positive or negative. This is because, as we show at the end of Section 3.1, the sign of �

is the same of the log-odds ratio between pairs of consecutive response variables and the

latter is equal to � under the dynamic logit model. Therefore, within the proposed approach

we reject H0 against the unidirectional alternative H1 
 � > 0, at the significance level �, if

the observed value of W is greater than z�, where z� is the 100�-th upper percentile of the

standard normal distribution. Similarly, we reject H0 against H1 
 � < 0 if the observed value

of W is smaller than −z� and we reject H0 against the bidirectional alternative H1 
 � 
= 0 if

the observed value of �W � is greater than z�/2.
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A relevant issue is if the same t-test as above may be based on the initial quadratic

exponential model QE1, using a statistic of type �̂/se��̂�, as also this model is equal to the

static logit model when � = 0. Our conjecture is that this test is less powerful than the test

based on the test statistic W defined above because the latter is based on a version of the

quadratic exponential model, the estimator of which better exploits the information about

the association between the response variables.

In order to illustrate the above point, we consider the simple case in which there are two

time occasions, no covariates, and no time-dummies. In this case it is possible to prove that

the CML estimator of � under model QE1 is equal to

�̂ = log
n110

n101

in terms of sample frequencies, whereas, under model QE2, the estimator of this parameter

has the explicit expression

�̃ = log
n001 + n110

n010 + n101
� (16)

In fact, after some simple algebra we have

�̃��� = ∑
i

1yi+ = 1�

{
�1yi1 = yi0� + 1yi2 = yi1���

− log
∑

z
z+=yi+

exp��1z1 = yi0� + 1z2 = z1���	

}
�
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that, in terms of sample frequencies, may be expressed as

�̃��� = �n001 + n110�� − m0 log k�0� − m1 log k�1��

where k�yi0� = exp��1 − yi0��	 + exp�yi0�� = 1 + exp��� and we recall that my0
= ny001 +

ny010. Consequently, the score function is

s̃��� = ∑
i

1yi+ = 1�

[
1yi1 = yi0� − 1yi1 = yi0� exp�1yi1 = yi0���

k�yi0�

]

= n001 + n110 − �m0 + m1�
exp���

1 + exp���
�

Solving s̃��� = 0 we obtain

exp���

1 + exp���
= n001 + n110

m0 + m1
�

and

logit
exp���

1 + exp���
= �̃ = log

n001 + n110

m0 + m1 − �n001 + n110�
�

which reduces to (16).

Both the above estimators converge in probability to the true value of � under the

dynamic logit model if H0 holds. However, the first estimator exploits a reduced amount

of information with respect to the second, as it ignores the response configurations ny0y1y2

with y0 = 0; something similar happens in more complex situations. Consequently the test

based on estimator �̂ (QE1) attains a reduced power than the one based on the estimator
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�̃ (QE2) when the true value of � is different from 0. As will be shown in Section 4.2, this

different behavior is also confirmed by the simulation study.6

In order to better compare our test with that of Halliday (2007), we consider the case

with T = 2 and only time dummies illustrated in Section 2.3. The conditional log-likelihood

of model QE2, as defined in (12), allows us to identify two parameters, that is, �

corresponding to the difference between the effect of the two time-dummies and � for the

state dependence, so that � = ��� ��′. Moreover, after some simple algebra similar to that

used above, we have that

�̃��� = �n001 + n101�� + �n001 + n110�� − m0 log k�0� − m1 log k�1��

where now k�yi0� = exp�� + �1 − yi0��	 + exp�yi0��. Consequently, the score function is

s̃��� =
(

n001 + n101 − m0 exp��+��

k�0�
− m1 exp���

k�1�

n001 + n110 − m0 exp��+��

k�0�
− m1 exp���

k�1�

)
�

In order to solve the system of two equations s̃��� = 0, we initially subtract the first

equation from the second and, after some algebra, we obtain

exp��� = n110

n101
exp���� (17)

6A related point is how the proposed test compares with a t-test based on one of the

fixed-effects estimators for the dynamic logit model, as the PCML estimator proposed by

Bartolucci and Nigro (2012). Since this estimator is based on a model similar to QE1, as

an approximating model, we expect a similar difference in terms of power with respect to

the proposed test for state dependence.
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We then substitute this result in the first equation obtaining

�̃ = 1
2

log
n001n101

n010n110
�

Finally, by substituting this solution in (17), we have

�̃ = 1
2

log
n001n110

n010n101
�

The last result proves that our test statistic is based on the same response variable

configurations of Halliday’s statistic in (6) and then it exploits the same amount of

information. Moreover, the two test statistics always exhibit the same sign since

sign��̃� = sign�log�n001n110� − log�n010n101�	 = sign�n001n110 − n010n101� = sign�p̂A − p̂B��

where p̂A − p̂B in the numerator of Halliday’s test statistic S defined in (5). This also

confirms that our estimator �̃ identifies the sign of the state dependence parameter � under

the dynamic logit model. A consequence is that the proposed test statistic W and the test

statistic S have the same asymptotic distribution with mean centered in 0 under the dynamic

logit model when H0 
 � = 0 holds; both test statistics diverge to +� or −� under the

dynamic logit model with � 
= 0 (the first case when the true value of � is positive and the

second when it is negative). This is in agreement with the similar performance of the tests

based on the two statistics, S and W , in terms of actual size and power that we note in the

simulation study when T = 2 and in absence of individual covariates.
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3.4. Model Estimation and Testing with Predetermined Covariates

The key of the proposed approach is that, under the dynamic logit model defined in (2),

the CML estimator of the state dependence parameter � in model QE2, as well as in

model QE1, converges in probability to 0 under H0 
 � = 0. This result holds, regardless of

the distribution of the individual-specific parameters �i, provided that the covariates are

strictly exogenous, so that (1) holds. Therefore, when there are predetermined covariates,

estimation of the state dependence parameter � may be biased and the proposed test is

not ensured to attain the nominal significance level. In the following we propose a simple

correction of the proposed approach to overcome this problem.

For t = 1� � � � � T , denote by f
(
xit � xi�t−1� yi�t−1

)
the conditional distribution of the covariates

xit given the lagged covariates and the response. In this framework, the conditional

distribution of p�yi � �i� xi0� Xi� yi0� under the dynamic logit model is different from that

given in (3). In fact, we have

f�yi� Xi � �i� xi0� yi0� = ∏
t

p�yit � �i� xit� yi�t−1�f�xit � xi�t−1� yi�t−1��

with p�yit � �i� xit� yi�t−1� is defined in (1). Consequently, we have

p�yi � �i� xi0� Xi� yi0� =
∏

t p�yit � �i� xit� yi�t−1�f�xit � xi�t−1� yi�t−1�∑
z
∏

t p�zt � �i� xit� zt−1�f�xit � xi�t−1� zt−1�

that under � = 0 simplifies to

p�yi � �i� Xi� yi0� = exp�yi+�i +∑
t yitx

′
it��

∏
t f�xit � xi�t−1� yi�t−1�∑

z exp�z+�i +∑
t ztx

′
it��

∏
t f�xit � xi�t−1� zt−1�

�
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It is clear that this expression is different from that holding under model QE2, see equation

(7), when � = 0, � = � and �i = �i and, therefore, Proposition 1 is not ensured to hold. It is

also clear that, if we want this proposition to hold even under the predetermined framework

defined above, model QE2 must be modified by including the component

��xi0� Xi� yi0� yi� = ∏
t

f�xit � xi�t−1� yi�t−1�� (18)

which may be seen as a weight associated to the response and covariate configuration.

The distribution of the response variables under the extended QE2 model is

p̃��yi � �i� Xi� yi0� = exp�yi+�i +∑
t yitx

′
it� + ỹi∗����Xi� yi0� yi�∑

z exp�z+�i +∑
t ztx

′
it� + z̃i∗����Xi� yi0� z�

�

which reduces to expression (7) when covariates are strictly exogenous, which implies that

f�xit � xi�t−1� yi�t−1� = f�xit � xi�t−1�. Finally, the conditional probability of yi given yi+ is

p̃��yi � Xi� yi0� yi+� = exp�
∑

t yitx
′
it� + ỹi∗����Xi� yi0� yi�∑

z
z+=yi+ exp�
∑

t ztx
′
it� + z̃i∗����Xi� yi0� z�

� (19)

which directly extends (11).

On the basis of expression (19), estimation and testing of � can be carried out by a two-step

approach. The first step consists of estimating the model for the predetermined covariates in

a suitable way, so as to obtain f̂ �xit � xi�t−1� yi�t−1� and then the estimated weighting function

�̂�xi0� Xi� yi0� yi� based on (18). The second step consists of maximizing the conditional log-
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likelihood �̃����, which is defined as in (12) on the basis of the individual contributes

�̃��i��� = ∑
t

yitxit� + ỹi∗� + log �̂�Xi� yi0� yi�

− log
∑

z
z+=yi+

exp

(∑
t

ztxit� + z̃i∗�

)
�̂�Xi� yi0� z��

The maximization of the �̃���� proceeds by a simple extension of the Newton-Raphson

algorithm outlined in Section 3.2, so as to obtain the estimator �̂� = ��̂′
�� �̂��′. Then,

the test statistic can be computed as W� = �̃�/se��̃��, where se��̃�� is corrected as

in Murphy and Topel (1985), and under H0 has still an asymptotic standard normal

distribution even with predetermined covariates. Obviously, a limit of this approach is

that the unobserved heterogeneity is not incorporated in the model for the predetermined

covariates. Nevertheless, simulations will show that the bias in the test statistic is negligible

in short panels.

4. SIMULATION STUDY

In order to study the finite–sample properties of the t-test for state dependence proposed in

Section 3, we performed a comprehensive Monte Carlo experiment based on a simulation

design similar to the one adopted by Honoré and Kyriazidou (2000).

4.1. Design

We generated samples from a dynamic logit model where the conditional mean specification

includes individual-specific intercepts, one covariate, and the lag of the response variable
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as follows:

yit = 1
{
�i + xit� + yi�t−1� + �it ≥ 0

}
�

for i = 1� � � � � n and t = 1� � � � � T , with initial condition

yi0 = 1 �i + xi0� + �i0 ≥ 0� �

The error terms �it are independent, and have zero–mean logistic distribution with variance

�2/3. For T ≥ 2, the individual intercepts �i are obtained as �i = 1
3

∑2
t=0 xit, where the

covariate xit is generated as

xi0 ∼ N
(
0� �2/3

)
�

xit = xi�t−1� + uit�

uit ∼ N
(
0�
(
1 − �2

)
�2/3

)
�

so that xit and �it have the same stationary variance. In this way, the generating model

admits a correlation between the covariates and the individual-specific intercepts and also

it allows for an autocorrelation of the covariate for the same unit according to an AR(1)

dependence structure. In particular, the covariate is autocorrelated if the parameter � is

different from 0, whereas if � is equal to 0 we have a simulation design with independent

covariate values at different occasions.

Based on the above generating model, we ran experiments for values of � on a grid between

−1�0 and 1�0 with step 0�1. The values of sample size we considered are n = 500� 1000

29

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Pe

ru
gi

a]
 a

t 0
8:

22
 2

9 
Ju

ne
 2

01
5 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

for T = 2� 5, � = 0� 1, and � = 0�5. The number of Monte Carlo replications in each

scenario is 1� 000. We also considered three variations of our benchmark design. In order

to investigate the properties of the t-test based on model QE2 when the distribution of �it

is non-logistic, we generated �it as a standard normal random variable. In addition, we

considered a static process for xit, that is � = 0.

Finally, we set up a scenario where the covariate xit is predetermined according to the

following model:

xit = xi�t−1� + yi�t−1� + �i + uit� i = 1� � � � � n� t = 1� � � � � T� (20)

where � and � are both equal to 0�5, uit is generated as above, and �i is a time-invariant

unobserved effect. In this case, we computed the test performing a two-step estimation of

model QE2 as described in Section 3.4. Since the first-step specification does not account

for individual heterogeneity, we performed the simulation in the case of �i = 0, i = 1� � � � � n,

which is the assumed data generating process. We also simulated these effects so that

�i ∼ N�0� 1� and E��i�i� = 0�5, in order to check whether the approach is robust to the

presence of unobserved heterogeneity. The first step consists of estimating, by a pooled

linear regression model, the parameters �, �, and �2, with �2 being the variance of uit,

obtaining �̂, �̂, and �̂2, respectively. Then, according to definition (18), the weighted function

is obtained as

�̂�xi0� xi� yi0� yi� = ∏
t

�

(
xit − �xi�t−1�̂ + yi�t−1�̂�

�̂

)
�
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where ��·� denotes the standard normal density function.

We performed the proposed t-test for state dependence based on model QE2 and compared

its behavior with those of the t-test based on model QE1 and of Halliday’s test, illustrated

in Sections 2.2 and 2.3 respectively. An important feature of the latter is that it does not

allow us to take into account individual covariates. A possible solution is performing the

test separately for subgroups of individuals. The problem is relevant when the covariates

are autocorrelated, as it is reasonable to expect in standard economic applications. A

procedure that ignores the presence of these explanatory variables may confound state

dependence with the persistence that comes from the correlation of yi�t−1 with xit, as both

depend on xi�t−1. Therefore, we expect Halliday’s test to exhibit rather poor size properties

in these circumstances.

From Halliday (2007), another issue is that it is not obvious how to test for state

dependence when T > 2. In our simulation, we considered all the possible triples(
yi�t−1� yit� yi�t+1

)
, t = 1� � � � � T − 1, computed Halliday’s test for each of these triples and

then decided when to reject H0 
 � = 0 by a multiple testing technique (see Hochberg and

Tamhane, 1987). In particular, H0 is rejected if at least one of the p–values that are

obtained from each of the T − 1 triples of consecutive observations is smaller than the

Bonferroni corrected nominal size. Such a correction ensures that the family-wise error rate

is controlled for. For instance, if we test the null hypothesis for a nominal size of 0�05, the

corrected nominal size is 1 − T−1
√

0�95 for each single test.
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4.2. Simulation Results

Figures 1 and 2 depict the power curves resulting from the simulation study. We report the

results for the proposed t-test defined in (15) based on model QE2, for the corresponding

test based on model QE1 defined in (4), and for the test proposed by Halliday (2007) based

on statistic S defined in (5). For a better comparison with the Halliday’s test, we estimated

models QE2 and QE1 including the covariate xit and without this covariate. For the t-tests,

the curves labeled “QE2_cov” and “QE1_cov” refer to the situation in which xit is included

in the model specification; the curves are labeled by “QE2_nocov” and “QE1_nocov” when

this covariate is ignored in the estimation. Rejection rates are displayed for a nominal

size � = 0�05 and against the bidirectional alternative hypothesis H1 
 � 
= 0. For certain

relevant values of �, Table 1 displays the rejection rate of this bidirectional test.7

The first two panels of Figure 1 show that the proposed t-test has empirical size equal to

the nominal level � when � = 0 and T = 2 and with both sample sizes, whereas a sample

size of at least 1000 is needed to exhibit satisfactory power properties. The power of the

test based on model QE1 is lower compared to that the proposed t-test and it increases

only slightly with a sample of 1000 and T = 2. The test based on model QE1 performs,

instead, similarly to the t-test when T is larger (see also Table 1). We recall that the main

7For each approach, we also considered both lower and upper tailed tests which are referred

to H1 
 � < 0 and H1 
 � > 0, respectively. In order to limit the number of results presented,

we focus the discussion of the Monte Carlo results on the bidirectional test while results

for the lower and upper tailed tests are available upon request.
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difference with the model QE2 here adopted for the t-test is in the way the association

between the response variables is accounted for.

In these basic scenarios, Halliday’s test statistic presents a behavior very similar to the

proposed test. With T = 5 and � = 0, the rejection rate for the proposed test sensibly

increases (see the third and fourth panels of Figure 1) reaching almost 100% for ��� = 0�6

with n = 500 and ��� = 0�4 with n = 1000. On the contrary, the generalization of Halliday’s

test statistic to cases with T > 2 leads to a remarkable power loss: with n = 500 and

��� = 0�5 the rejection rate is about one half of that of the proposed test (see also Table 1).

Figure 2 provides an illustration of the simulation results with � = 1. In this case, the

proposed test, “QE2_cov”, and the test based on model QE1 maintain their size properties

and “QE1_cov” still exhibits a power loss, compared to “QE2_cov”, when T is equal to 2.

In this scenario, however, Halliday’s test over-rejects the null hypothesis of absence of state

dependence when this hypothesis is true. Moreover, the test size bias grows with the sample

size: when T = 2, for example, the rejection rate under H0 rises from 23% with n = 500 to

44% with n = 1000 (see Table 1). As expected, ignoring the presence of covariates in testing

for state dependence leads to mistakenly detect a significant persistence in the dependent

variable.

This result is also confirmed by the rejection rates of “QE2_nocov” and “QE1_nocov” that

exhibit the same behavior as Halliday’s. Regarding the power, it decreases for all the three
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tests when � = 1 rather than � = 0. Nevertheless, our test shows a better performance

in the case � < 0. On the other hand, for � > 0 and T = 2 this test has less power than

Halliday’s, which, however, confounds the positive autocorrelation in the covariate with a

positive state dependence.

We report the simulation results of our experiment with standard normal error terms in

Figures 3 and 4.8 Over all scenarios, the behavior of the tests based on models QE2 and

QE1 and of Halliday’s tests do not change remarkably when the distribution of �it is

normal, except for a slight tendency to over-reject the true null hypothesis in “QE2_cov”

and in “QE1_cov” when � = 1.

Figures 5 and 6 show the simulation results for a design where xit follows a static process.

When � = 0, the five tests perform in the same way as in a design with an autocorrelated

covariate (see Figure 1). In contrast, when � = 1 and with T = 5, the proposed test

“QE2_cov”maintains good size and power properties as well as the test based on model

QE1 (albeit exhibiting less power), while Halliday’s test and the tests “QE2_nocov” and

“QE1_nocov” greatly over-reject the true null hypothesis.

Finally, Figures 7 and 8 show the results of the experiment design with predetermined

covariates outlined at the end of Section 4.1 where the covariates follow the process

defined in (20) with � = 0�5 and � = 0�5. The test statistic computed by means of the

8Simulation results for the upper and lower tailed tests are available upon request.
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two-step procedure described in Section 3.4 is labeled “QE2_pred”. The behavior of the

test based on the two-step QE2 in the case of �i = 0 (Figure 7) mostly remains unchanged,

with a slight loss of power for small values of T . However, Figure 8 shows that, in

the presence of unobserved heterogeneity in the model for the predetermined covariate,

“QE2_pred” tends to slightly over-reject the null hypothesis when � = 0, especially with

T large. Notwithstanding, the original version of the test “QE2_cov” does not exhibit a

reliable behavior, as it over-rejects the true null hypothesis far too often with both large n

and T .

In conclusion, the simulation results show that the t-test based on model QE2 has good

size and power properties that improve when n and T increase and are overall robust

when the distribution of the time-varying error term is misspecified and in the presence of

predetermined covariates, if the two-step version of QE2 is implemented.

The comparison with the test based on model QE1 and with Halliday’s test confirm the

superiority of the proposed t-test. As expected, the power properties of the test based

on the initial QE1 model are less satisfactory compared to those of the proposed test.

This is due to an information loss: model QE1 only considers the information concerning

pairs of consecutive observations such that (yi�t−1 = yit = 1). The above simulation results

also confirm our conjecture that, in absence of individual covariates and when T = 2, the

proposed t-test for state dependence performs similarly, in terms of size and power, to the

test proposed by Halliday (2007). Furthermore, in all other situations, our test is superior
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to the other, mainly due to the fact that its nominal size level is attained with any T ≥ 2

and in the presence of individual covariates.

5. EMPIRICAL APPLICATION

In this section, we illustrate the proposed test by means of two examples. The first

one is based on the PSID dataset and analyzes state dependence in female labor force

participation and fertility. The purpose of this empirical application is to verify that results

given by the proposed test are coherent with those found in the literature. It is well known

that the individual’s employment history shows positive state dependence (see, for instance,

Hyslop, 1999; Carrasco, 2001) while fertility is negatively serially correlated (Bartolucci

and Farcomeni, 2009).

In the second example, we test for state dependence in SRHS using data form the HRS

dataset. In general, health outcome variables exhibit a high level of persistence. Such a

persistence, however, can be due to both time-invariant unobserved heterogeneity and

state dependence. The proposed test allows us to detect the state dependence effect while

properly taking into account individual time-invariant effects. Since health variables receive

considerable attention within health care policy, empirical studies have recently started to

analyze the persistence in SRHS: Heiss (2011) finds that SRHS is positively autocorrelated

in HRS; Halliday (2008) uses PSID data; Carro and Traferri (2012) analyze the British

Household Panel Survey.
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5.1. Example 1: Employment and Fertility

We base our example on a dataset derived from the Panel Study of Income Dynamics. Our

application is closely related to the empirical analyses in Hyslop (1999) and in Bartolucci

and Farcomeni (2009) that focus on the effect of fertility on women employment and on the

magnitude of the state dependence effect in both variables. The dataset concerns n = 1446

married women between 18 and 46 years of age followed for T = 5 time occasions.

We compute the proposed t-test statistic for H0 
 � = 0 based on model QE2 defined in (11)

and compare it with Halliday’s test statistic defined in (5) for each triple (yi�t−1� yit� yi�t+1),

t = 1� � � � � T − 1, applying the Bonferroni corrected nominal size (see Section 4). Since

several time-varying individual characteristics are available, we compute the test based on

model QE2 using the following covariates: number of children in the family between 1 and

2 years of age “child 1-2” and, similarly, “child 3-5”, “child 6-14”, “child 14-”, “income”

of the husband in dollars, time-dummies (1987 is taken as initial condition), “lagged

employment”, and “lagged fertility”. In modeling employment as a function of fertility, a

possible endogeneity problem may arise as the labor force and fertility decisions may be

jointly determined (see Carrasco, 2001, and references therein). Therefore, we also compute

the test based on the two-step estimation of model QE2 (see Section 3.4), where the first

step consists of a regression of “fertility” on an intercept, “lagged employment”, and

“lagged fertility”. Similarly, we compute the test using the two-step QE2 when modeling

fertility as a function of employment.
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If the null hypothesis of no state dependence is rejected, it is necessary to estimate the

model parameters in a dynamic framework. As illustrated in Sections 2.1 and 2.2, suitable

approaches are based on the CML estimator of Honoré and Kyriazidou (2000), the PCML

estimator (Bartolucci and Nigro, 2012), or biased-corrected fixed-effects estimators (Carro,

2007). If the null hypothesis is not rejected, we simply estimate a static logit model.

For the dataset here considered, Table 2 reports the test statistics using the complete

sample of n = 1446 women. The proposed test, indicated by QE2_cov, strongly rejects the

null hypothesis of absence of state dependence for both response variables employment

and fertility. The same result is obtained with the test based on the two-step QE2

model, indicated by QE2_pred. The signs of the test statistics also indicate positive state

dependence for employment and negative for fertility. The same happens for the Halliday’s

test statistics, the values of which lead to reject the null hypothesis: in both cases there is

at least one p–value lower than the Bonferroni corrected nominal size.

Since the null hypothesis of absence of state dependence is rejected, we estimated the

dynamic logit model by the PCML estimator. The estimation results, reported in Table 3,

confirm a strong positive state dependence for employment with an estimated coefficient �̂

close to 1�550 and a negative state dependence for fertility with �̂ equal to −0�906.

We further expand our application by analyzing the role of education in the labor force

participation decision and fertility. The information available is the number of years of
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schooling in 1987 so, since time–invariant effects cancel out in model QE2, the test must be

performed separately for different values of the educational attainment. For our exercise,

we grouped observations of women with at most 12 years of schooling and those of women

with more than 12 years of schooling (12 years corresponds to complete compulsory

education).

Table 4 shows the test statistics for the two groups: in both cases the positive state

dependence in employment is detected by all the test statistics, as they reject H0. On the

contrary, Halliday’s test does not seem to detect the negative state dependence in fertility

for less educated women; this is an important difference with respect to our approach.

For this sub-sample, the PCML estimate of the state dependence parameter is −0�145 but

not significantly different form 0. Overall, in this case the higher power of the proposed

testing approach emerges over both the Halliday’s approach and the approach based on

the PCML estimator. Finally, for women with more than 12 years of schooling, there

is agreement between all the tests as these reject the null hypothesis of absence of state

dependence in fertility. For this sub-sample, the PCML estimate of � is equal to −1�275.

5.2. Example 2: Self Reported Health Status

In the following, we test for state dependence in SRHS using a dataset based on HRS.

Moreover, we further extend the analysis by analyzing the persistence in the health

condition within different socio-demographic groups, separated by gender, race and

education. In fact, along with SRHS, the dataset contains information on the individual’s
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age at the time of the interview, gender, race, and education. After dropping observations

with missing data in the variables of interest, we end up with a dataset of n = 7074

individuals for T = 8 periods, evenly interviewed form 1992 to 2006.

The response variable SRHS contains ordered responses to the question “How is your

health in general?”: it takes values 1 to 5 for the categories “excellent”, “very good”,

“good”, “fair”, and “poor”. For more accurate descriptive statistics, we refer the reader to

Bartolucci et al. (2014a). In order to perform the proposed test for state dependence, we

dichotomized SRHS: we tested for state dependence using all possible dichotomizations of

the response variable generating the dummy variables yj = 1 �SRHS > j� for j = 1� � � � � 4.

We performed the proposed test by estimating model QE2 which includes the age of

the individual as covariate. Gender, race (white and non-white) and education (less than

college, some college, college and above) are, instead, time–invariant so we need to test for

state dependence separately for socio-demographic subgroups.

Table 5 reports the results of the test for state dependence for the whole sample and the

different subgroups.

We find that, considering all the individuals in the sample, there is a strong positive state

dependence effect in the health status in all the dichotomizations considered and the same

result is found for the different subgroups considered. Coherently with the results found
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by Carro and Traferri (2012) and Halliday (2008), the persistence in the response to the

SRHS question persists beyond the unobserved individual fixed effect.

We further disaggregated our sample by taking male and female with different levels

of educational attainment and within these groups we consider white and non–white

individuals. The second part of Table 5 shows the results of the proposed test for these

sub-groups. Both males and females with different educational levels display a strong

positive state dependence over all the dichotomizations considered. The same results are

found when we take white individuals separately, while for non white-individuals the

persistence in the response variable is somewhat weaker: for non-white less educated

females, we accept the null hypothesis of absence of state dependence in poor health status

(y4), and for all non-white individuals college educated or above there is not a strong state

dependence effect for all the considered dichotomizations.

In conclusion, we find that SRHS exhibits a positive state dependence considering both the

whole sample and different sub-groups. This effect seems to weaken when we consider state

dependence in the extreme categories (poor and excellent health), for non-white and highly

educated individuals.

6. CONCLUSIONS

In this paper, we propose a test for state dependence under the dynamic logit model with

individual covariates. The test is based on a modified version of the quadratic exponential
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model proposed in Bartolucci and Nigro (2010) in order to exploit more information about

the association between the response variables. We show that this model correctly identifies

the presence of state dependence regardless of whether individual covariates are present or

not. We also show how the test may be used, in a modified version, with predetermined

covariates.

Our test directly compares with the one proposed by Halliday (2007), which, however,

cannot be easily applied in a panel with more than two periods (further to the initial

observation) and does not allow for individual covariates. In the special case of two time

periods and no covariates, the proposed test employs the same information on the response

variables as Halliday’s.

We studied the finite–sample properties of the t-test for state dependence proposed in this

paper by means of a comprehensive Monte Carlo experiment in which it is compared

with the test proposed by Halliday (2007). Simulation results show that the proposed

test attains the nominal size even with not large samples (500 sample units), while it

exhibits satisfactory power properties with large sample sizes. As expected, ignoring the

presence of time-varying covariates in testing for state dependence leads to mistakenly

detect a significant persistence in the response variable: the proposed test maintains its

size properties, whereas Halliday’s test over-rejects the true null hypothesis of absence of

state dependence. Moreover, when state dependence is negative and the covariate positively

affects the response variable, Halliday’s test shows a remarkable power loss.
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This result is confirmed by our empirical study based on a dataset derived from the Panel

Study of Income Dynamics: when using either the whole sample or different sub-samples,

the proposed test always rejects the null hypothesis of absence of state dependence in

fertility for parameter estimates of about −1, whereas Halliday’s test may fail to detect the

state dependence. We also performed the proposed test on the self reported health status

based on a dataset derived from the Health and Retirement Study: we find that there is a

strong positive state dependence effect in the health outcome variable that persists across

gender, ethnicity, and different educational levels but not for highly educated non-white

individuals.

Overall, the main advantages of the proposed test are the simplicity of use and its

flexibility. In fact, it can be very simply performed and does not require to formulate

any parametric assumption on the distribution of the individual-specific intercepts (or on

the correlation between these intercepts and the covariates) as random-effects approaches

instead require. Moreover, it may be used even with only two time occasions (further to

an initial observations) and with individual covariates, including time-dummies.

Finally, it is worth noting that the proposed test, being based on a modified quadratic

exponential model, is more powerful than a t-test test based on more traditional quadratic

exponential models or on the PCML estimator of Bartolucci and Nigro (2012). This aspect

also emerges from the simulation study and the empirical applications.
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Table 1: Simulation Results for the t-Test (QE1 and QE2) and Halliday’s Test Statistics:

Bidirectional, � = 0�5� � = 0

� QE2_cov QE1_cov Halliday QE2_nocov QE1_nocov

n = 500

� = 0 −1�0 0.854 0.709 0.846 0.855 0.710
T = 2 −0�5 0.313 0.195 0.312 0.314 0.191

0�0 0.048 0.045 0.052 0.044 0.050
0�5 0.261 0.130 0.270 0.262 0.130
1�0 0.684 0.268 0.682 0.690 0.268

� = 0 −1�0 1.000 0.999 0.990 1.000 0.999
T = 5 −0�5 0.983 0.960 0.524 0.982 0.959

0�0 0.054 0.046 0.053 0.055 0.047
0�5 0.971 0.915 0.413 0.972 0.916
1�0 1.000 0.999 0.929 1.000 0.999

� = 1 −1�0 0.523 0.347 0.122 0.122 0.102
T = 2 −0�5 0.158 0.110 0.064 0.064 0.058

0�0 0.052 0.039 0.233 0.233 0.148
0�5 0.137 0.091 0.583 0.583 0.311
1�0 0.368 0.158 0.832 0.832 0.448

� = 1 −1�0 1.000 0.999 0.452 0.530 0.465
T = 5 −0�5 0.810 0.718 0.073 0.123 0.116

0�0 0.056 0.050 0.283 0.951 0.875
0�5 0.761 0.675 0.748 1.000 0.999
1�0 1.000 0.992 0.981 1.000 0.999

n = 1000

� = 0 −1�0 0.989 0.935 0.987 0.988 0.933
T = 2 −0�5 0.557 0.351 0.556 0.550 0.354

0�0 0.054 0.050 0.059 0.058 0.056
0�5 0.474 0.220 0.474 0.471 0.222
1�0 0.943 0.483 0.930 0.946 0.480

� = 0 −1�0 1.000 0.999 1.000 1.000 0.999
T = 5 −0�5 0.998 0.997 0.849 0.998 0.997

0�0 0.060 0.053 0.058 0.061 0.051
0�5 0.998 0.996 0.719 0.998 0.996
1�0 1.000 0.999 1.000 1.000 0.999

� = 1 −1�0 0.815 0.600 0.171 0.172 0.149
T = 2 −0�5 0.270 0.169 0.078 0.076 0.062

0�0 0.051 0.045 0.441 0.430 0.246
0�5 0.243 0.136 0.850 0.848 0.525
1�0 0.658 0.308 0.980 0.983 0.772

� = 1 −1�0 1.000 0.999 0.745 0.800 0.743
T = 5 −0�5 0.980 0.956 0.113 0.146 0.122

0�0 0.043 0.044 0.417 1.000 0.995
0�5 0.971 0.933 0.980 1.000 0.999
1�0 1.000 0.999 1.000 1.000 0.999

(“QE1_cov” and “QE2_cov” refer to the case in which the covariate xit is included in the

QE1/QE2 model; “QE1_nocov” and “QE2_nocov” refer to the case in which the covariate

is not included. �it is distributed as a standard logistic r.v.)
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Table 2: Tests for State Dependence (H1 
 � 
= 0): Proposed t-Test QE2 and Halliday’s

Test Statistics for the Overall PSID Dataset

Employment Fertility

t-stat. p-value t-stat. p-value

QE2_cov 13�58 0�00 −6�80 0�00
QE2_pred 15�55 0�00 −7�93 0�00
Halliday’s test
S1 (1st triple) 5�75 0�00 −4�74 0�00
S2 (2nd triple) 4�80 0�00 −4�97 0�00
S3 (3rd triple) 4�02 0�00 −1�09 0�27
S4 (4th triple) 4�27 0�00 −5�10 0�00
Sample size 1446 1446

Model QE2 is estimated with covariates; Bonferroni corrected nominal size: 0.010206;

Results of the first step estimation for computing QE2_pred are (standard errors in

parentheses):

• Employment equation: fertit = 0�070
�0�005�

− ferti�t−1 0�027
�0�011�

− empli�t−1 0�003
�0�006�

; �̂ = 0�249
�0�003�

• Fertility equation: emplit = 0�267
�0�008�

+ empli�t−1 0�622
�0�009�

− ferti�t−1 0�054
�0�016�

; �̂ = 0�360
�0�004�
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Table 3: Estimation Results Based on the PCML Approach (Bartolucci and Nigro,

2012): Overall PSID Dataset

Employment Fertility

coeff. s.e. t-stat. p-value coeff. s.e. t-stat. p-value

Child 1–2 −0�675 0.13 −5�10 0.00 −0�719 0.15 −4�72 0.00
Child 3–5 −0�312 0.12 −2�52 0.01 −1�085 0.21 −5�05 0.00
Child 6–13 −0�032 0.12 −0�25 0.40 −1�055 0.26 −4�08 0.00
Child 14– −0�010 0.14 −0�07 0.47 −0�800 0.43 −1�86 0.03
Income/1000 −0�007 0.00 −1�68 0.05 −0�000 0.00 −0�13 0.45
1989 0�089 0.14 −1�12 0.13 0�402 0.15 4�64 0.00
1990 0�317 0.13 0�65 0.26 0�445 0.19 2�64 0.00
1991 0�089 0.13 2�49 0.01 0�397 0.24 2�31 0.01
1992 0�001 0.13 0�67 0.25 0�448 0.29 1�66 0.05
Lag fertility −0�185 0.17 −1�09 0.28 −0�906 0.21 −4�35 0.00
Lag employment 1�550 0.11 13�93 0.00 0�801 0.17 1�56 0.06
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Table 4: Tests for State Dependence (H1 
 � 
= 0): Proposed t-Test QE2 and Halliday’s

Test Statistics for the PSID Dataset, by Education

Years of schooling ≤ 12 Years of schooling > 12
Employment Fertility Employment Fertility

t-stat. p-value t-stat. p-value t-stat. p-value t-stat. p-value

QE2_cov 10�18 0�00 −2�70 0�01 9�04 0�00 −6�25 0�00
QE2_pred 11�11 0�00 −4�07 0�00 10�90 0�00 −6�82 0�00
Halliday’s test
S1 (1st triple) 3�04 0�00 −1�60 0�11 5�27 0�00 −5�79 0�00
S2 (2nd triple) 3�49 0�00 −0�81 0�41 3�30 0�00 −6�28 0�00
S3 (3rd triple) 2�83 0�00 −0�79 0�43 2�75 0�01 −0�78 0�00
S4 (4th triple) 4�40 0�00 −1�18 0�24 1�68 0�09 −5�45 0�00
Sample size 773 673

Model QE2 is estimated with covariates; Bonferroni corrected nominal size: 0.010206;

Results of the first step estimation for computing QE2_pred are (standard errors in

parentheses):

• Employment equation (sch. ≤ 12): fertit = 0�049
�0�006�

+ ferti�t−1 0�001
�0�014�

− empli�t−1 0�000
�0�007�

; �̂ =
0�215
�0�003�

• Fertility equation (sch. ≤ 12): emplit = 0�243
�0�010�

+ empli�t−1 0�639
�0�012�

− ferti�t−1 0�020
�0�024�

; �̂ = 0�363
�0�005�

• Employment equation (sch. > 12): fertit = 0�101
�0�009�

− ferti�t−1 0�059
�0�016�

− empli�t−1 0�011
�0�010�

; �̂ =
0�281
�0�004�

• Fertility equation (sch. > 12): emplit = 0�299
�0�012�

+ empli�t−1 0�599
�0�014�

− ferti�t−1 0�087
�0�020�

; �̂ = 0�357
�0�006�

The PCML estimates are available upon request.
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Table 5: Tests for State Dependence (H1 
 � 
= 0): Proposed t-Test QE2 for the RAND

HRS Dataset

y1 y2 y3 y4

s. size t-test p-value t-test p-value t-test p-value t-test p-value

Total 7,074 15�17 .000 20�73 .000 20�07 .000 12�91 .000
Male 2,697 10�08 .000 13�53 .000 13�20 .000 9�77 .000
Female 4,107 11�38 .000 15�69 .000 15�09 .000 8�58 .000
White 5,863 14�30 .000 19�03 .000 18�40 .000 12�52 .000
Non-white 1,211 5�65 .000 8�40 .000 7�85 .000 3�40 .001
Less than c. 4,309 13�37 .000 17�56 .000 14�49 .000 8�53 .000
Some c. 1,395 5�93 .000 9�47 .000 9�95 .000 6�67 .000
C. and above 1,370 3�43 .001 5�36 .000 9�30 .000 6�68 .000

Male, Less than college
White 1,398 8�55 .000 10�55 .000 8�38 .000 5�52 .000
Non-white 312 2�34 .019 4�07 .000 4�29 .000 1�75 .081
All 1,710 8�49 .000 11�24 .000 9�45 .000 5�76 .000

Female, Less than college
White 2,050 9�40 .000 12�65 .000 10�36 .000 6�60 .000
Non-white 549 4�35 .000 5�38 .000 3�42 .001 −0�04 .969
All 2,599 10�34 .000 13�52 .000 10�98 .000 6�30 .000

Male, Some college
White 475 3�97 .000 6�02 .000 5�56 .000 3�76 .000
Non-white 68 1�53 .127 2�36 .018 2�82 .005 3�39 .001
All 543 4�18 .000 6�47 .000 6�17 .000 4�78 .000

Female, Some college
White 727 3�70 .000 5�44 .000 6�95 .000 4�96 .000
Non-white 125 1�44 .149 4�59 .000 3�53 .000 −0�56 .577
All 852 3�97 .000 6�75 .000 7�73 .000 4�72 .000

Male, College and above
White 662 2�11 .035 3�36 .001 6�60 .000 5�69 .000
Non-white 52 0�51 .607 1�06 .287 0�10 .921 1�96 .050
All 714 2�20 .028 3�55 .000 6�43 .000 6�00 .000

Female, College and above
White 551 3�07 .000 3�86 .000 5�86 .000 3�24 .001
Non-white 105 −0�29 .772 1�13 .259 3�44 .001 0�65 .513
All 656 2�75 .006 4�08 .000 6�75 .000 3�33 .001
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Figure 1: Power plots for the t-test (QE2 and QE1) and Halliday’s tests: bidirectional

(H1 
 � 
= 0), � = 0� � = 0�5� � = 0.
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Figure 2: Power plots for the t-test (QE2 and QE1) and Halliday’s tests: bidirectional

(H1 
 � 
= 0), � = 1� � = 0�5� � = 0.
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Figure 3: Power plots for the t-test (QE2 and QE1) and Halliday’s tests: bidirectional

(H1 
 � 
= 0), normal error term, � = 0� � = 0�5� � = 0.
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Figure 4: Power plots for the t-test (QE2 and QE1) and Halliday’s tests: bidirectional

(H1 
 � 
= 0), normal error term, � = 1� � = 0�5� � = 0.
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Figure 5: Power plots for the t-test (QE2 and QE1) and Halliday’s tests: bidirectional

(H1 
 � 
= 0), � = 0� � = 0� � = 0.
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Figure 6: Power plots for the t-test (QE2 and QE1) and Halliday’s tests: bidirectional

(H1 
 � 
= 0), � = 1� � = 0� � = 0.
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Figure 7: Power plots for the t-test (QE2 and QE1) and Halliday’s tests: bidirectional

(H1 
 � 
= 0), � = 1� � = 0�5� � = 0�5, �i = 0, i = 1� � � � � n (predetermined covariates).
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Figure 8: Power plots for the t-test (QE2 and QE1) and Halliday’s tests: bidirectional

(H1 
 � 
= 0), � = 1� � = 0�5� � = 0�5, �i ∼ N�0� 1�, i = 1� � � � � n (predetermined covariates).
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a b s t r a c t

We show how the dynamic logit model for binary panel data may be approximated by a quadratic
exponential model. Under the approximating model, simple sufficient statistics exist for the subject-
specific parameters introduced to capture the unobserved heterogeneity between subjects. The latter
must be distinguished from the state dependencewhich is accounted for by including the lagged response
variable among the regressors. By conditioning on the sufficient statistics, we derive a pseudo conditional
likelihood estimator of the structural parameters of the dynamic logit model, which is simple to compute.
Asymptotic properties of this estimator are studied in detail. Simulation results show that the estimator
is competitive in terms of efficiency with estimators recently proposed in the econometric literature.
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1. Introduction

One of the most important econometric models for binary
panel data is the dynamic logit model, which includes, among
the regressors, individual-specific intercepts for the unobserved
heterogeneity and the lagged response variable for the true state
dependence (Feller, 1943; Heckman, 1981a,b); see Hsiao (2005)
for a review and Bartolucci and Farcomeni (2009) for extended
versions of this model.

The individual-specific intercepts, included in the dynamic
logit model, may be treated as fixed or random parameters. The
fixed-parameters approach has the advantage of not requiring
the formulation of any distribution on these parameters and
of naturally addressing the well-known problem of the initial
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conditions; see Heckman (1981c) and Wooldridge (2000). On the
other hand, the dynamic logit model with fixed-effects suffers
from the incidental parameter problem (Neyman and Scott, 1948)
and then the standard maximum likelihood estimator of the
parameters of interest, for the covariates and the state dependence,
is not consistent as the sample size grows to infinity. Using the
statistical terminology, they will be referred to as the structural
parameters.

A well-known method to overcome the problem of the
incidental parameters consists of conditioning the inference on
suitable sufficient statistics for these parameters. When the lagged
response variable is omitted from the model, and therefore true
state dependence is ruled out, sufficient statistics for the incidental
parameters are the sums of the response variables at individual
level, which will be referred to as the total scores (see Rasch, 1961).
The resulting maximum likelihood estimator of the structural
parameters may be computed by a simple Newton–Raphson
algorithm and has optimal asymptotic properties (see Andersen,
1970, 1972). A conditional likelihood approach can also be
followed when the assumed logit model includes the lagged
response variable. This approach was developed by Honoré and
Kyriazidou (2000)who, by employing some results of Chamberlain
(1985), proposed a weighted conditional likelihood estimator of
the structural parameters. The sufficient statistics on which this
approach is based are different from the total scores and are

http://dx.doi.org/10.1016/j.jeconom.2012.03.004
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http://www.elsevier.com/locate/jeconom
mailto:bart@stat.unipg.it
mailto:valentina.nigro@bancaditalia.it
http://dx.doi.org/10.1016/j.jeconom.2012.03.004


F. Bartolucci, V. Nigro / Journal of Econometrics 170 (2012) 102–116 103
such that a larger number of response configurations does not
contribute to the likelihood. Moreover, the approach requires
the specification of a suitable kernel function for weighting the
response configuration of each subject in the sample on the basis
of the covariates, implying the exclusion of time dummies and the
reduction of the rate of convergence of the estimator to the true
parameter value.

An alternative to conditional likelihood estimators is repre-
sented by bias corrected estimators, which have a reduced order
of bias without increasing the asymptotic variance (see Hahn and
Newey, 2004; Carro, 2007; Fernandez-Val, 2009; Hahn and Kuer-
steiner, 2011). The main advantage of this method is its general
applicability to other dynamic models, beyond the logit one. An-
other positive aspect is the possibility to estimate policy param-
eters which depend on the fixed-effects, but note that marginal
effect estimators have reduced bias only for long panels.

In this paper, we propose a pseudo conditional likelihood
approach for estimating the dynamic logit model, which is based
on approximating it by amodel of quadratic exponential type (Cox,
1972). The approximating model is very similar to that proposed
by Bartolucci and Nigro (2010) and corresponds to a log-linear
model for the conditional distribution of the response variables
given the initial observation and the covariates. The two-way
interaction effects of this model are equal to a common parameter
when they are referred to a pair of consecutive response variables
and to 0 otherwise; moreover, up to a correction term, the main
effects directly depend on the covariates and on individual-specific
parameters for the unobserved heterogeneity. We show that the
interaction parameter may be interpreted as in the dynamic
logit model in terms of log-odds ratio, a well-known measure of
association between binary variables (Agresti, 2002, Ch. 8).

It is worth noting that, although the statistical literature
sometimes criticizes the use of log-linear models for the analysis
of binary longitudinal data (see Diggle et al., 2002; Molenberghs
and Verbeke, 2004), Bartolucci and Nigro (2010) showed that the
model they developed has a meaningful interpretation in terms
of expectation about future outcomes. Moreover, as for the Rasch
(1961) model, the total scores are sufficient statistics for the
incidental parameters. Then, the structural parameters may be
estimated by a conditionalmaximum likelihood estimatorwhich is√
n-consistent even in the presence of aggregate variables, which

are time-specific and common to all the subjects, such as time
dummies.

We also show how to construct a pseudo conditional likelihood
estimator of the structural parameters of the dynamic logit model
which is based on the quadratic exponential approximation of this
model. The estimator is simple to compute and does not require
to formulate a weighting function as the estimator of Honoré and
Kyriazidou (2000) does. Moreover, its asymptotic properties are
studied on the basis of standard inferential results on maximum
likelihood estimation ofmisspecifiedmodels (White, 1982; Newey
and McFadden, 1994). In particular, we show that the proposed
estimator is consistent for the vector of pseudo true parameters;
in absence of state dependence, this vector coincides with the
true parameter vector. Finite sample properties of the proposed
estimator are studied by a series of simulations performed along
the same lines as in Honoré and Kyriazidou (2000) and Carro
(2007). These simulations show that the estimator is usually more
efficient than alternative estimators.

Finally,weoutline someextensions of the proposed approach to
the case of dynamic logit models including a second-order lagged
response variable and to that of categorical response variableswith
more than two categories. Note that the approach could also be
adopted to estimate the dynamic probit model that, together with
the dynamic logit model, is a workhorse model for binary panel
data. In this way, we can reach a level of generality similar to that
of the approach of Carro (2007).
The paper is organized as follows. In the next section we
briefly review the relevant literature for the proposed approach.
The approximating model used within this approach is described
in Section 3, where its conditional distribution given the total
scores is also derived. The resulting pseudo conditional maximum
likelihood estimator is proposed in Section 4. Moreover, in
Section 5 we illustrate the asymptotic properties, under the true
logit model, of this estimator and in Section 6 we show the results
of the simulation study. Finally, in Section 7 we outline some
possible extensions of the proposed approach and in Section 8 we
draw the main conclusions.

All the algorithms described in this paper have been imple-
mented inMatlab functionswhich are available from thewebpage
www.stat.unipg.it/~bart.

2. Preliminaries

With reference to a sample of n subjects observed at T
consecutive occasions, let yit be the binary random variable
for subject i at occasion (or period) t , with i = 1, . . . , n and
t = 1, . . . , T , and let xit be a corresponding vector of exogenous
observable covariates. In the following, we first review the
dynamic logit model for data of this type and the methods of
Honoré and Kyriazidou (2000) and Carro (2007) for the estimation
of its parameters.We then review the quadratic exponentialmodel
of Bartolucci and Nigro (2010) as a valid alternative to the dynamic
logit model.

2.1. Dynamic logit model

In the econometric literature, binary data models are generally
represented through a latent index function allowing for unob-
served heterogeneity and first-order state dependence, that is

yit = 1{αi + xit ′β + yi,t−1γ + εit > 0}, i = 1, . . . , n,

t = 1, . . . , T , (1)

where 1{·} is the indicator function, αi is a fixed individual-specific
parameter, εit represents the stochastic error term, and the initial
observation yi0 is assumed to be exogenous. The parameters of
primary interest are β and γ , which are the structural parameters
and, in the following, will be jointly denoted by θ = (β′, γ )′. In
particular, γ is the state dependence parameter which is assumed
to be constant across individuals. The parameters αi are instead
considered as incidental parameters. Nevertheless, they cannot be
omitted from the model in order to prevent biased estimation of
the state dependence effect.

The dynamic logit model results when the errors terms εit are
supposed independent and identically distributed, conditionally
on the covariates and on the parameters αi, with standard logistic
distribution. Therefore, the conditional distribution of the overall
vector of response variables yi = (yi1, . . . , yiT ) given αi, Xi =

(xi1 · · · xiT ), and yi0 may be expressed as

p(yi|αi,Xi, yi0) =

exp

yi+αi +


t
yitxit ′β + yi∗γ



t
[1 + exp(αi + xit ′β + yi,t−1γ )]

, (2)

where yi+ =


t yit and yi∗ =


t yi,t−1yit , with the product


t
and the sum


t ranging over t = 1, . . . , T .

An interesting approach for estimating the fixed-effects model
illustrated above is based on the maximization of the condi-
tional likelihood given suitable statistics for the incidental param-
eters. In particular, Honoré and Kyriazidou (2000), extending the

http://www.stat.unipg.it/~bart
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conditional approach of Chamberlain (1985), proposed an esti-
mator based on the maximization of a weighted conditional log-
likelihood. For T = 3, this log-likelihood is defined as follows

i

1{yi1 + yi2 = 1}K

xi2 − xi3
σn


log[r(yi|αi,Xi, yi0,

yi1 + yi2 = 1, yi3, xi2 = xi3)], (3)

where K(·) is a kernel function with bandwidth σn a priori fixed
and

r(yi|αi,Xi, yi0, yi1 + yi2 = 1, yi3, xi2 = xi3)

=
exp{yi1[(xi1 − xi2)′β + (yi0 − yi3)γ ]}

1 + exp[(xi1 − xi2)′β + (yi0 − yi3)γ ]
.

Note that theweight given to the response configuration of subject
i decreaseswith the distance between xi2 and xi3 and a largeweight
is given to the response configuration of this subject when xi2 is
close to xi3, and then the property of conditional independence of
yi from αi approximately holds.

The fixed-effects approach of Honoré and Kyriazidou (2000) has
the advantage of not requiring particular assumptions either on the
unobserved heterogeneity or on the initial conditions. However,
its use requires a careful choice of the kernel function and of
its bandwidth. This choice affects the rate of convergence of the
estimator to the true parameter value. The rate of convergence is
in any case slower than

√
n. Moreover, since only certain response

configurations are considered (such that yi1 + yi2 = 1 and xi2 is
near to xi3 with T = 3), the actual sample size1 is usually much
smaller than the nominal sample size n; this limits the efficiency of
the estimator. Furthermore, aggregate variables are not identified
in this approach because of the support condition required for the
covariates. For further comments see Magnac (2004) and Honoré
and Tamer (2006).

A recent field of research is based on a different approach to
the estimation of the dynamic discrete choice models with fixed-
effects, proposing bias corrected estimators. These estimators have
a reduced order of bias with respect to the conventional maximum
likelihood estimator, without having a higher asymptotic variance
(see Hahn and Newey, 2004; Carro, 2007; Fernandez-Val, 2009;
Hahn and Kuersteiner, 2011). In particular, Carro (2007) showed
that the correction of the score function reduces the order (in T )
of its bias from O(1) to O(T−1), giving an estimator unbiased to
order O(T−2). Although this estimator is only consistent when the
number of time periods goes to infinity, Monte Carlo simulations
have shown its good finite sample performance in comparison to
the estimator of Honoré and Kyriazidou (2000), evenwith not very
long panels (e.g., eight time periods).

2.2. Quadratic exponential model

The family of quadratic exponential models was firstly pro-
posed by Cox (1972) for the analysis of multivariate binary data.
Models belonging to this class are log-linear models in which all
the effects of order higher than two are equal to zero. Their use
for the analysis of binary longitudinal data has been already con-
sidered in the statistical literature; for a review see Diggle et al.
(2002) and Molenberghs and Verbeke (2004).

Bartolucci and Nigro (2010) introduced a model belonging
to the above family for which they provide a meaningful

1 The actual sample size is the number of response configurations which
contribute to the likelihood.
interpretation. The model assumes that the joint response
probability for subject i is given by
p(yi|δi,Xi, yi0)

=

exp

yi+δi +


t
yitxit ′φ1 + yiT (ψ + xiT ′φ2)+ yi∗τ



z
exp


z+δi +


t
ztxit ′φ1 + zT (ψ + xiT ′φ2)+ zi∗τ

 , (4)

where the sum


z ranges over all the possible binary response
vectors z = (z1, . . . , zT ); moreover, z+ =


t zt and zi∗ = yi0z1 +

t>1 zt−1zt . Thismodel closely resembles the dynamic logitmodel
based on the joint probability (2) and, as such, it allows for state
dependence and unobserved heterogeneity, beyond the effects of
the available covariates. Note that, in order to avoid confusionwith
the dynamic logitmodel, we nowdenote the incidental parameters
by δi, the parameter vectors for the covariates byφ1 andφ2, and the
parameter for the state dependence by τ .

The model parameters may be interpreted by considering that
assumption (4) implies that
p(yit |δi,Xi, yi0, . . . , yi,t−1)

=
exp{yit [δi + xit ′φ1 + yi,t−1τ + e∗

t (δi,Xi)]}

1 + exp[δi + xit ′φ1 + yi,t−1τ + e∗
t (δi,Xi)]

,

where, for t < T we have

e∗

t (δi,Xi) = log
1 + exp[δi + xi,t+1

′φ1 + e∗

t+1(δi,Xi)+ τ ]

1 + exp[δi + xi,t+1
′φ1 + e∗

t+1(δi,Xi)]

= log
p(yi,t+1 = 0|δi,Xi, yit = 0)
p(yi,t+1 = 0|δi,Xi, yit = 1)

,

and
e∗

T (δi,Xi) = ψ + xiT ′φ2. (5)
The last expression is a reduced form for the correction term for the
last time period. This correction term depends on future covariates
and it is therefore approximated by a linear form of the covariate
vector xiT .

Even if the above model is here used as a tool for estimating
the dynamic logit model, it is worth noting that it is equivalent
to a latent index model with error terms logistically distributed
and systematic part including a correction term e∗

t (δi,Xi), besides
the usual covariates. This term may be interpreted as a measure
of the effect of the present choice yit on the expected utility (or
propensity) at the next occasion (t + 1). Moreover, as under
the dynamic logit, yit is conditionally independent of any other
response variable given yi,t−1 and yi,t+1 and the parameter τ
for the state dependence is the log-odds ratio between any pair
of variables (yi,t−1, yit), conditional on all the other response
variables or marginal with respect to these variables. For a more
detailed description of these properties, which are related to the
model interpretation, and in particular of Eq. (5), we refer to
Bartolucci and Nigro (2010).

From the point of view of inference, the main advantage
of the above model is that the parameters for the unobserved
heterogeneity may be eliminated by conditioning on the sums
of the response variables across time. In this way, the structural
parameters are identified with at least two observations further
to the initial observation (T ≥ 2), even in the presence of
time dummies, giving a

√
n-consistent estimator. This estimator is

computed bymeans of a simpleNewton–Raphson algorithmwhich
maximizes the log-likelihood based on the conditional probability
p(yi|δi,Xi, yi0, yi+)

=

exp


t
yitxit ′φ1 + yiT (ψ + xiT ′φ2)+ yi∗τ




z:z+=yi+
exp


t
ztxit ′φ1 + zT (ψ + xiT ′φ2)+ zi∗τ

 , (6)
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where the sum


z:z+=yi+
is extended to all response configura-

tions z with sum equal to yi+.
The absence of assumptions on the support of the covariates

implies a larger actual sample exploited by this estimator with
respect to that of Honoré and Kyriazidou (2000), and then a higher
efficiency.

3. Proposed approximation

In this section, we propose an approximation of the dynamic
logit model illustrated in Section 2.1 through a quadratic
exponential model. We also discuss the main features of the
approximating model in comparison to the true model.

3.1. Approximating quadratic exponential model

Along the same lines followed by Cox and Wermuth (1994),
Bartolucci and Pennoni (2007), and Bartolucci (2010) in different
contexts, we first take the logarithm of the joint probability
p(yi|αi,Xi, yi0) as defined in (2) under the dynamic logit model,
that is

log[p(yi|αi,Xi, yi0)] = yi+αi +

t

yitxit ′β + yi∗γ

−


t

log[1 + exp(αi + xit ′β + yi,t−1γ )]. (7)

Then, we approximate the component which is not linear in the
parameters through a first-order Taylor-series expansion around
αi = ᾱi, β = β̄, and γ = 0, obtaining2

t

log[1 + exp(αi + xit ′β + yi,t−1γ )]

≈


t

{log[1 + exp(ᾱi + xit ′β̄)] + q̄it [αi − ᾱi + xit ′(β − β̄)]}

+ q̄i1yi0γ +


t>1

q̄ityi,t−1γ , (8)

where ᾱi and β̄ denote fixed values of αi and β, respectively, and

q̄it =
exp(ᾱi + xit ′β̄)

1 + exp(ᾱi + xit ′β̄)
. (9)

The last one is the expression of the probability that yit = 1 when
the parameters are fixed as above. Note that only the last sum at
the rhs of expression (8) depends on the response configuration
yi. Therefore, by substituting (8) in (7) and renormalizing
the exponential of the resulting expression, we obtain the
approximation

p(yi|αi,Xi, yi0) ≈ p∗(yi|αi,Xi, yi0),

with

p∗(yi|αi,Xi, yi0)

=

exp

yi+αi +


t
yitxit ′β −


t>1

q̄ityi,t−1γ + yi∗γ



z
exp


z+αi +


t
ztxit ′β −


t>1

q̄itzt−1γ + zi∗γ
 , (10)

2 As for the quality of approximation, from standard results on Taylor-series
expansions we have that the remainder term R is bounded above as follows:

R ≤ 0.25

t

{(αi − ᾱi)
2/2 + [xit ′(β − β̄)]2/2

+ yi,t−1γ
2/2 + (αi − ᾱi)xit ′(β − β̄)+ yi,t−1(αi − ᾱi)γ + yi,t−1xit ′(β − β̄)γ }.
with


z and zi∗ defined as in (4). In applying this approximation
to estimate the parameter of the dynamic logit model, the terms
q̄it will be chosen in a suitable way.

From expression (10), we easily recognize that the approximat-
ingmodel is amodified version of the quadratic exponentialmodel
of Bartolucci and Nigro (2010), illustrated in Section 2.2. Moreover,
the joint probability under the approximating model mimics ex-
pression (2) which holds under the true dynamic logit model, the
main difference being in the denominator which in (10) does not
depend on yi and is simply a normalizing constant that may be de-
noted by µ(αi,Xi, yi0). Also note that the true model and the ap-
proximating model coincide when there is no state dependence,
both of them reducing to the static logit model. In fact, with γ = 0
we have

p∗(yi|αi,Xi, yi0) =

exp

yi+αi +


t
yitxit ′β



z
exp


z+αi +


t
ztxit ′β


=


t

exp[yit(αi + xit ′β)]
1 + exp(αi + xit ′β)

, (11)

which does not depend either on ᾱi or β̄.
The strong connection between the true model and the

approximating model is clarified in the following Theorem, which
may be proved along the same lines as in Bartolucci and Nigro
(2010).

Theorem 1. For i = 1, . . . , n, quadratic exponential model (10) im-
plies that the conditional logit of yit , given αi,Xi, and yi0, . . . , yi,t−1,
is equal to

log
p∗(yit = 1|αi,Xi, yi0, . . . , yi,t−1)

p∗(yit = 0|αi,Xi, yi0, . . . , yi,t−1)

=


αi + xit ′β + yi,t−1γ + et(αi,Xi)− q̄i,t+1γ , if t < T ,
αi + xit ′β + yi,t−1γ , if t = T , (12)

where

et(αi,Xi) = log
p∗(yi,t+1 = 0|αi,Xi, yit = 0)
p∗(yi,t+1 = 0|αi,Xi, yit = 1)

.

This correction term depends on the data only through xi,t+1, . . . , xi,T
and is such that et(αi,Xi) ≈ q̄i,t+1γ , t = 2, . . . , T , where the
approximation is in the sense of (8).

For i = 1, . . . , n, model (10) also implies that:
(i) yit is conditionally independent of yi0, . . . , yi,t−2 given αi, Xi, and

yi,t−1 (t = 2, . . . , T);
(ii) yit is conditionally independent of yi0, . . . , yi,t−2, yi,t+2, . . . ,

yiT , given αi, Xi, yi,t−1, and yi,t+1 (t = 2, . . . , T − 1).
Note that, for t = T , expression (12) is based exactly on

the same parametrization adopted under the dynamic logit
model. When t < T , this equivalence holds approximately since
et(αi,Xi) ≈ q̄i,t+1γ . The above Theorem also implies that

log
p∗(yit = 1|αi,Xi, yi,t−1 = 1)
p∗(yit = 0|αi,Xi, yi,t−1 = 1)

− log
p∗(yit = 1|αi,Xi, yi,t−1 = 0)
p∗(yit = 0|αi,Xi, yi,t−1 = 0)

= γ ,

i = 1, . . . , n, t = 1, . . . , T ,
and then, under the approximating model, γ may be interpreted
as the log-odds ratio between any consecutive pair of response
variables, conditional on or marginal with respect to all the other
response variables. This is the same interpretation that γ has
under the dynamic logit. Moreover, the approximating model
reproduces the same conditional independence relations between
the response variables (see results (i) and (ii) above) of the dynamic
logit model.
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3.2. Conditional distribution given the sufficient statistics

Regardless of the distribution of the covariates, the approximat-
ing model has minimal sufficient statistics for the heterogeneity
parameters αi, which are the total scores yi+, i = 1, . . . , n. The
availability of these sufficient statistics is the main advantage with
respect to the true model. In particular, expression (10) implies
that the conditional distribution of yi given Xi, yi0, and yi+ is

p∗(yi|Xi, yi0, yi+) =
p∗(yi|αi,Xi, yi0)
p∗(yi+|αi,Xi, yi0)

=

exp


t
yitxit ′β −


t>1

q̄ityi,t−1γ + yi∗γ



z:z+=yi+

exp


t
ztxit ′β −


t>1

q̄itzt−1γ + zi∗γ
 ,

where the sum at the denominator is defined as in (6); this
expression does not depend on αi. Dividing the numerator and the
denominator by exp(yi+xi1′β), it may be reformulated in a simpler
way as

p∗(yi|Xi, yi0, yi+)

=

exp


t>1
yitdit

′β −

t>1

q̄ityi,t−1γ + yi∗γ



z:z+=yi+

exp


t>1
ztdit

′β −

t>1

q̄itzt−1γ + zi∗γ
 , (13)

with dit = xit − xi1. Then, time-invariant covariates and the
individual intercepts αi are not identified. The same happens for
all conditional approaches, such as that of Honoré and Kyriazidou
(2000) and that employed by Bartolucci and Nigro (2010) to make
inference on the quadratic exponential model. Moreover, as in the
approach of Honoré and Kyriazidou (2000), we assume the strictly
exogeneity of the regressors, which is a standard condition for the
consistency of conditional likelihood estimators.

On the basis of an estimate for the structural parameters, each
parameter αi may be estimated by maximizing the corresponding
log-likelihood under the true model, that is log p(yi|αi,Xi, yi0), by
a standard algorithm. With short panels, more stable estimates
of these parameters may be obtained by maximizing a modified
version of this log-likelihood, which is formulated as proposed in
McCullagh and Tibshirani (1990) or Firth (1993). The estimates
of the individual intercepts αi obtained in this way allow us to
derive marginal effects in an obvious way. At this regard see also
Fernandez-Val (2009).

A natural question that arises at this point is why we rely on
a Taylor-series expansion around a point of the parameter space
at which γ = 0, instead of considering a generic point αi = ᾱi,
β = β̄, γ = γ̄ . The first reason for doing this is that an expansion
about γ = γ̄ would result in a model that, although rather similar
to that based on (10), has sufficient statistics for the incidental
parameters which differ from the total scores and imposes too
many restrictions on the support of the covariates. On the other
hand, a series of simulations has shown that the estimator of θ
obtained by maximizing the pseudo conditional likelihood based
on approximation (10) has a very low bias even when samples are
generated from a dynamic logit model of type (2), in which the
parameter γ is far from 0. See Section 6 for a detailed illustration
of the results of these simulations.

4. Pseudo conditional likelihood estimator

In this Section, we introduce the pseudo conditional likelihood
estimator based on the approximating model described above,
whichmay be computed on the basis of an observed sample of size
n, represented by (Xi, yi0, yi), with i = 1, . . . , n.
4.1. Definition of the estimator

It is clear that the use of the approximating model, having
joint probability mass function defined in (10), requires to fix the
probabilities q̄it , i = 1, . . . , n, t = 2, . . . , T . At this aim, we rely on
a preliminary estimation of the vector of the regression parameters
for the covariates. Therefore, the proposed estimator of θ is based
on the following two steps:

1. Compute a preliminary estimate β̃ of the vector of regression
parameters by maximizing the conditional likelihood of the
static logit model. We write this log-likelihood as

ℓ(β̄) =


i

1{0 < yi+ < T }ℓi(β̄),

ℓi(β̄) = log
exp


t>1

yitdit
′β̄




z:z+=yi+
exp


t>1

ztdit
′β̄

 , (14)

which is the same conditional log-likelihood of the approximat-
ing model under γ = 0 and may be maximized by a standard
Newton–Raphson algorithm. Note that we include 1{0 < yi+ <
T } in the above expression because ℓi(β̄) is equal to 0 for yi+
equal to 0 or T .

2. Estimate θ by maximizing the conditional log-likelihood of the
approximating model, based on (13), which has expression

ℓ∗(θ|β̄) =


i

1{0 < yi+ < T }ℓ∗

i (θ|β̄),

ℓ∗

i (θ|β̄) = log[p∗

θ|β̄
(yi|Xi, yi0, yi+)];

(15)

we add the subscript θ|β̄ to p∗(yi|Xi, yi0, yi+) in order to under-
line its dependence on θ and on β̄ through the probabilities q̄it ,
t = 2, . . . , T , with β̄ = β̃. These probabilities are computed, for
every i such that 0 < yi+ < T , by Eq. (9), with each individual
parameter ᾱi equal to its maximum likelihood estimate under
the same static logit model as above.3

The resulting pseudo conditional likelihood estimator is denoted
by θ̂ = (β̂′, γ̂ )′.

Note that, even in expression (15) we include the indicator
function 1{0 < yi+ < T }, since ℓ∗

i (θ|β̄) = 0 when yi+ = 0 or
yi+ = T . Then, the corresponding response configurations do not
provide information on the parameters. The actual sample size is
then smaller than the nominal one, but it is always larger than
that we have in the approach of Honoré and Kyriazidou (2000),
which is based on theweighted log-likelihood of type (3).With T =

3, for instance, the response configurations yi omitted from (15)
are (0, 0, 0) and (1, 1, 1), whereas the response configurations
(0, 0, 1) and (1, 1, 0) are also omitted from (3).

In order to show how to maximize ℓ∗(θ|β̄) and to study the
properties of the proposed estimator θ̂, it is convenient to express
each component ℓ∗

i (θ|β̄) in the canonical exponential family form
as
ℓ∗

i (θ|β̄) = u∗(yi0, yi)′A∗(Xi)
′θ

− log


z:z+=yi+

exp[u∗(yi0, z)′A∗(Xi)
′θ], (16)

3 The maximum likelihood estimate of αi is obtained by maximizing the
individual log-likelihood
t

log
exp[yit (αi + xit ′β̄)]
1 + exp(αi + xit ′β̄)

=


t

yit (αi + xit ′β̄)− log[1 + exp(αi + xit ′β̄)].

The solution ᾱi is simple to find and is such that


t q̄it = yi+ .
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with

u∗(yi0, yi) =


yi2, . . . , yiT , yi∗ −


t>1

q̄ityi,t−1

′

. (17)

Moreover

A∗(Xi) =


XiD′ 0
0′ 1


, (18)

where D =

−1 I


, with I denoting an identity matrix of

suitable dimension, is a matrix of contrasts such that XiD′
=

(di2 · · · diT ) and 0 denotes a column vector of zeros of suitable
dimension. Consequently, the score vector s∗(θ|β̄) = ∇θℓ

∗(θ|β̄)

and the observed information matrix J∗(θ|β̄) = −∇θθℓ
∗(θ|β̄)

may be found through standard results on the exponential family
(Barndoff-Nielsen, 1978, Ch. 8). In particular, we have

s∗(θ|β̄) =


i

1{0 < yi+ < T }A∗(Xi){u∗(yi0, yi)

− E∗

θ|β̄
[u∗(yi0, yi)|Xi, yi0, yi+]}, (19)

J∗(θ|β̄) =


i

1{0 < yi+ < T }A∗(Xi)

× V ∗

θ|β̄
[u∗(yi0, yi)|Xi, yi0, yi+]A∗(Xi)

′, (20)

which depend on the following conditional expected value and
variance

E∗

θ|β̄
[u∗(yi0, yi)|Xi, yi0, yi+] =


z:z+=yi+

u∗(yi0, z)p∗

θ|β̄
(z|Xi, yi0, yi+),

V ∗

θ|β̄
[u∗(yi0, yi)|Xi, yi0, yi+]

= E∗

θ|β̄
[u∗(yi0, yi)u∗(yi0, yi)′|Xi, yi0, yi+]

−E∗

θ|β̄
[u∗(yi0, yi)|Xi, yi0, yi+]E∗

θ|β̄
[u∗(yi0, yi)|Xi, yi0, yi+]

′.

Note that ℓ∗(θ|β̄) is always concave since the observed
information matrix J∗(θ|β̄) is always non-negative definite, as it
is the sum of a series of variance–covariance matrices. When the
sample size is large enough, under identifiability conditions on
the covariates (see Theorem 2 below), this matrix is almost surely
positive definite. Therefore, ℓ∗(θ|β̄)may bemaximized by a simple
Newton–Raphson algorithm. This algorithm performs a series of
iterations until convergence. At the hth iteration, the estimate of θ
is updated as

θ(h) = θ(h−1)
+ J∗(θ(h−1)

|β̄)−1s∗(θ(h−1)
|β̄). (21)

The estimate θ̂ is then found at convergence of this algorithm.
Usually the iterative algorithm rapidly converges to the maximum
of ℓ∗(θ|β̄), given the concavity of this function.

How to obtain standard errors for the proposed estimator,
taking even into account the first step required to choose β̄,
is shown after an example based on a simple, but important,
reference model.

4.2. Case of T = 2 time occasions

In order to illustrate the proposed estimator, we consider the
case of T = 2 time-occasions with only time dummies. This
example is closely related to that provided for the static logitmodel
by Hsiao (2005, Sec. 7.3) and is based on the assumption

p(yi1|αi, yi0) =
exp[yi1(αi + yi0γ )]
1 + exp(αi + yi0γ )

,

p(yi2|αi, yi1) =
exp[yi2(αi + β + yi1γ )]
1 + exp(αi + β + yi1γ )

,

for i = 1, . . . , n. Note that this model has only two parameters,
which are β , corresponding to the difference between the two
regression coefficients for the two time dummies, and γ for the
state dependence.

For the above model, at step 1 we compute the conditional
estimator of β by the explicit formula

β̃ = log
n001 + n101

n010 + n110
,

where ny0y1y2 denote the frequency of the response configuration
(y0, y1, y2). Then, for every i such that yi+ = 1, at step 2 we
compute ᾱi = −β̄/2 and we let

q̄i2 = q̄2 =
exp(β̄/2)

1 + exp(β̄/2)
,

with β̄ = β̃ . Moreover, we maximize the pseudo conditional log-
likelihood (15), where each component ℓ∗

i (θ|β̄) is expressed as in
(16), with u∗(yi0, yi) = (yi2, yi0yi1−q̄2yi1)′ andA∗(Xi) simply equal
to an identity matrix of dimension 2. After some algebra, we have
that

ℓ∗(θ|β̄) =


i

1{yi+ = 1}[yi2β + (yi0yi1 − q̄2yi1)γ − log k(yi0)],

k(yi0) = exp[(yi0 − q̄2)γ ] + exp(β),

which may be also expressed as

ℓ∗(θ|β̄) = (n001 + n101)β + [n110 − q̄2(n010 + n110)]γ

−m0 log k(0)− m1 log k(1),

where my0 = ny001 + ny010 is the frequency of the response
configurations with initial observation equal to y0 and y1 ≠ y2.

From (19), we have that the score is

s∗(θ|β̄) =


i

1{yi+ = 1}

×

 yi2 −
exp(β)
k(yi0)

yi0yi1 − q̄2yi1 −
(yi0 − q̄2) exp[(yi0 − q̄2)γ ]

k(yi0)

 .
Moreover, from (20) we have the following expression for the
observed information matrix

J∗(θ|β̄) =


i

1{yi+ = 1} exp[β + (yi0 − q̄2)γ ]

k(yi0)2

×


1 −(yi0 − q̄2)

−(yi0 − q̄2) (yi0 − q̄2)2


.

Using the frequencies ny0y1y2 , we have the equivalent expressions
which are given in Box I. It is worth noting that the determinant of
the latter matrix is equal to

|J∗(θ|β̄)| =
exp[2β + (1 − 2q̄2)γ ]m0m1

k(0)2k(1)2
,

which is strictly positive if m0 > 0 and m1 > 0. Under this
condition, the function to be maximized, ℓ∗(θ|β̄), is strictly
concave and has only one maximum obtained by solving the
equation s∗(θ|β̄) = 0.

4.3. Standard errors

In order to derive an expression for the standard errors, we rely
on the GeneralizedMethod ofMoments (GMM) approach (Hansen,
1982). In fact, the proposed estimation method consists of solving
the score equation

g(β̄, θ) =


i

1{0 < yi+ < T }gi(β̄, θ) = 0,
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2)

3)
s∗(θ|β̄) =

 n001 + n101 −
m0 exp(β)

k(0)
−

m1 exp(β)
k(1)

n110 − q̄2(n010 + n110)+
m0q̄2 exp(−q̄2γ )

k(0)
−

m1(1 − q̄2) exp[(1 − q̄2)γ ]

k(1)

 (2

and

J∗(θ|β̄) =
m0 exp(β − q̄2γ )

k(0)2


1 q̄2
q̄2 q̄22


+

m1 exp[β + (1 − q̄2)γ ]

k(1)2


1 −(1 − q̄2)

−(1 − q̄2) (1 − q̄2)2


. (2

Box I.
where

gi(β̄, θ) =


∇β̄ℓi(β̄)

∇θℓ
∗

i (θ|β̄),


with ℓi(β̄) defined in (14) and ℓ∗

i (θ|β̄) defined in (15). The solution
of this equation is represented by (β̃′, θ̂′)′.

Once the proposed method is casted into a GMM approach,
we are legitimated to estimate the variance–covariance matrix of
(β̃′, θ̂′)′ by

W (β̃, θ̂) = H(β̃, θ̂)−1S(β̃, θ̂)[H(β̃, θ̂)−1
]
′, (24)

where

S(β̄, θ) =


i

1{0 < yi+ < T }gi(β̄, θ)gi(β̄, θ)′

and

H(β̄, θ) =


i

1{0 < yi+ < T }Hi(β̄, θ),

Hi(β̄, θ) =


∇β̄β̄ℓi(β̄) O

∇θβ̄ℓ
∗

i (θ|β̄) ∇θθℓ
∗

i (θ|β̄)


,

is the derivative of g(β̄, θ) with respect to (β̄′, θ′). In the above
expression, O denotes a suitable matrix of zeros, whereas the
expressions of the other blocks are given in Appendix.

Once the matrix W (β̃, θ̂) is computed as above, the standard
errors for the pseudo conditional estimators in θ̂ may be obtained
in the usual way from the main diagonal of the lower right
submatrix of W (β̃, θ̂). Then, an approximate (1 − α)-level
confidence interval may be constructed for any parameter βh in β
and for γ as follows

β̂h ∓ zα/2se(β̂h) and γ̂ ∓ zα/2se(γ̂ ),

where se(·) denotes the standard error obtained as above and
zα/2 is the 100(1 − α/2)th percentile of the standard Normal
distribution.

5. Asymptotic properties of the pseudo conditional likelihood
estimator

In this section, we deal with identifiability issues and asymp-
totic properties of the proposed estimator under the true model.
At this regard, we assume that the data (Xi, yi0, yi), i = 1, . . . , n,
are independently drawn from the truemodel based on the density
function f0(X, y0, y). The latter is obtained from the marginaliza-
tion of

f0(α,X, y0, y) = f0(α,X, y0)p0(y|α,X, y0), (25)

where f0(α,X, y0) denotes the joint distribution of the individual-
specific intercept α, the covariates X = (x1 · · · xT ), and the initial
observation y0. Moreover, p0(y|α,X, y0) denotes the conditional
distribution of the response variables under dynamic logit model
(2) when θ = θ0, with θ0 = (β0

′, γ0)
′ denoting the true value of its
structural parameters. By suitable marginalization of the densities
in (25), we also obtain f0(X, y0), p0(y|X, y0), and f0(X, y0, y+),
which will be used in the following.

Under the above assumption, we first investigate the issue
of consistency of the proposed estimator θ̂, which is strongly
connected to that of the identification of the parameters (Newey
and McFadden, 1994). Then, we deal with the asymptotic
distribution of the estimator.

5.1. Consistency

Let β̄∗ the point atwhich the conditional estimator β̃, computed
at the step 1, converges in probability as n tends to infinity. In
symbols, we have β̃

p
→ β̄∗ as n → ∞. Then

ℓ∗(θ|β̃)

n
p

→ E0[ℓ∗

i (θ|β̄∗)], ∀θ ∈ Θ, (26)

where ℓ∗(θ|β̃) is the pseudo conditional log-likelihood considered
at step 2 and Θ is the parameter space. Moreover, by E0[ℓ∗

i (θ|β̄∗)]
we mean the expected value, under the true model, of the
individual component of the log-likelihood defined in (16). More
explicitly, we have that

E0[ℓ∗

i (θ|β̄∗)] = E0{E0[ℓ∗

i (θ|β̄∗)|X, y0]}, (27)

where the outer expected value at rhs is with respect to the
distribution f0(X, y0), whereas the inner expected value is with
respect to p0(y|X, y0), that is

E0[ℓ∗

i (θ|β̄∗)|X, y0] =


y


u∗(y0, y)′A∗(X)′θ

− log


z:z+=y+

exp[u∗(y0, z)′A∗(X)′θ]


× p0(y|X, y0), (28)

with u∗(y0, y) andA∗(X) defined in (17) and (18), respectively. It is
important to recall that u∗(y0, y) involves the probabilities q̄it that,
in computing (28), are substituted by

q̄∗t(X, y) =
exp(ᾱ∗ + xt ′β̄∗)

1 + exp(ᾱ∗ + xt ′β̄∗)
,

where ᾱ∗ is such that


t q̄∗t(X, y) = y+.
A relevant aspect of E0[ℓ∗

i (θ|β̄∗)] is that it has first derivative
corresponding to a single component of the sum used in (19) to
define the score vector. This derivative is equal to v∗(θ|β̄∗), with

v∗(θ|β̄) = ∇θE0[ℓ∗

i (θ|β̄)] = E0(A∗(X){u∗(y0, y)

− E∗

θ|β̄
[u∗(y0, y)|X, y0, y+]}), (29)

where the outer expected value in the last expression is with
respect to f0(X, y0, y) which, in turn, depends on true parameter
vector θ0. Similarly, the corresponding information matrix, equal
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to minus the second derivative matrix of E0[ℓ∗

i (θ|β̄∗)], is based
on a single component of the sum in (20). More precisely, this
information matrix is equal to F ∗(θ|β̄∗), where

F ∗(θ|β̄) = −∇θθE0[ℓ∗

i (θ|β̄∗)]

= E0{A∗(X)V ∗

θ|β̄
[u∗(y0, y)|X, y0, y+]A∗(X)′}, (30)

with the outer expected value in the last expression being with
respect to f0(X, y0, y+). This implies that E0[ℓ∗

i (θ|β̄∗)] is always
concave and is strictly concave when F ∗(θ|β̄∗) is of full rank. In
this case, we denote by θ∗ the unique maximum of this function,
which is obtained as the solution of v∗(θ|β̄∗) = 0. Moreover,
also considering (26) and that ℓ∗(θ|β̄∗) is a concave function,
the following theorem holds. This theorem directly derives from
Theorem 2.7 of Newey and McFadden (1994); for related results,
see also Akaike (1973) and White (1982).

Theorem 2. Provided that the matrix F ∗(θ|β̄∗) in (30) is of full rank
and as n → ∞, the pseudo conditional estimator θ̂ exists with
probability approaching 1 and θ̂

p
→ θ∗, where θ∗ is the unique

maximum of E0[ℓ∗

i (θ|β̄∗)].

A first important point is how to check the regularity condition
that F ∗(θ|β̄∗) is of full rank. This regularity condition may be
empirically checked on the basis of the rank of J∗(θ|β̄) computed
to maximize ℓ∗(θ|β̄).

Another fundamental point is how to characterize the pseudo
true parameter vector θ∗. We can easily realize that θ∗ = θ0
when γ0 = 0 since, in this case, the data are generated under
the static logit model which is a particular case of the proposed
approximating model; see Eq. (11). This implies that v∗(θ|β̄∗) is
equal to 0 at θ = θ0 and then the uniquemaximum of E0[ℓ∗

i (θ|β̄∗)]
is at the true parameter vector θ0 which, therefore, is correctly
identified. Therefore, θ̂ is consistent for θ0 when γ0 = 0.

On the other hand, when γ0 ≠ 0, θ̂ converges to a point θ∗,
the distance of which from θ0 decreases as the distance of γ0 from
0 decreases. If we knew the generating model, the point θ∗ could
be found by a maximization algorithm of the type used to find the
estimator θ̂ and thenwemay obtain the asymptotic bias as θ∗−θ0;
see Section 5.2. However, in empirical applications, in which we
have limited information on the generatingmodel, we can perform
a sensitivity analysis to figure out the maximum level of bias that
we can expect. More detail on the computation of this asymptotic
bias are given in Section 5.3 for the case of T = 2.

5.2. Asymptotic bias

Suppose that the generating model, and then the distribution
f0(α,X, y0) and the true parameter vector θ0, is known. Then,
we can compute by numerical integration, or by a Monte Carlo
method, the expected log-likelihood function E0[ℓ∗

i (θ|β̄∗)] defined
in (27) and maximize this function by performing a series of
Newton–Raphson steps of type (21). Starting from θ = θ0,
at the h-th of these steps, we update the previous solution,
θ(h−1), by adding F ∗(θ|β̄∗)

−1v∗(θ|β̄∗), where the vector v∗(θ|β̄∗)

is computed through (29) and F ∗(θ|β̄∗) through (30). Note that,
when an explicit solution is not available for computing β̄∗, which
is the point at convergence of the estimator β̃, we can find it by a
similar maximization algorithm as above, which is based on the
expected score vector v(β̄) and the Fisher information F(β̄). In
particular, v(β̄)may be computed by an expression similar to (29)
considering that under the static model γ = 0; accordingly, F(β̄)
may be computed by an expression similar to (30). An example on
how to apply this method to find θ∗ whenwe know the generating
model, and then to obtain the asymptotic bias θ∗ − θ0, is provided
in the following section.

In real applications, we observe sample values of the covariates
and of the initial observation, that is Xi and yi0, i = 1, . . . , n.
However, we have no information on the generating model, in
particular concerning the distribution of the individual effects αi.
Then, in order to quantify the maximum expected bias of the
proposed estimator we propose to perform a sensitivity analysis
in which different distributions of these individual effects are
considered and for each of these distributions we compute θ∗

and the corresponding distance from θ0. For instance, we can use
a normal distribution for these effects, with mean and variance
chosen on a suitable grid of possible values.4 Then, for each
assumeddistribution of theαi, we performan algorithmof the type
described above to maximize an estimate of E0[ℓ∗

i (θ|β̄∗)], which is
computed on the basis of the observed Xi and yi0. This estimate is
computed as

Ê0[ℓ∗

i (θ|β̃)] =
1
n


i

E0[ℓ∗

i (θ|β̄∗)|Xi, yi0],

where the expected value at rhs is with respect to the distribution
of αi and p(yi|αi,Xi, yi0), assuming θ0 = θ̂, where θ̂ is the
estimate of θ obtained on the observed sample. This function may
be maximized by a Newton–Raphson algorithm similar to the one
described above for the case in whichwe knew the true generating
model. Starting from θ = θ0, this algorithm is based on steps of
type F̂ ∗(θ|β̄)−1v̂∗(θ|β̄), where

v̂∗(θ|β̄) =
1
n


i

A∗(Xi)E0{u∗(y0, y)

− E∗

θ|β̄
[u∗(y0, y)|Xi, yi0, y+]|Xi, yi0},

F̂ ∗(θ|β̄) =
1
n


i

A∗(Xi)

× E0{V ∗

θ|β̄
[u∗(y0, y)|Xi, yi0, yi+]|Xi, yi0}A∗(Xi)

′.

In performing this sensitivity analysis, different values of the θ0

around the estimate θ̂ may also be tried, together with different
formulations of the distribution of αi.

5.3. Case of T = 2 time occasions

In order to illustrate the results in Sections 5.1 and 5.2, consider
again the case of T = 2 time occasions dealt with in Section 4.2.
In this case, the first derivative vector and the information matrix
for E0[ℓ∗

i (θ|β̄∗)] have the same expressions as in (22) and (23),
respectively, with each frequency ny0y1y2 and my0 substituted by
the corresponding probabilities under the true model, denoted by
πy0y1y2 and λy0 . In particular, it is important to note that

|F ∗(θ|β̄∗)| =
exp[2β + (1 − 2q̄∗2)γ ]λ0λ1

k(0)2k(1)2
,

which is strictly positive if λ0 > 0 and λ1 > 0, implying that this
matrix is of full rank and then Theorem 2 holds.

In this case it is easy to show that θ∗ = θ0 when γ0 = 0 and then
there is no state dependence. In fact, if γ0 = 0 the first derivative
vector of E0[ℓ∗

i (θ|β̄∗)] is equal to 0when

β = β0 = log
π001 + π101

π010 + π110
= logit

π001 + π101

λ0 + λ1
and γ = 0.

4 A referee suggested to choose a normal distribution for the individual effects,
where themean depends on the covariates. This is for allowing correlation between
the regressors and the unobserved effects. However, we expect that the most
challenging case in estimating a panel data model, such as a dynamic logit model, is
when the individual effects are independent of the covariates, since otherwise part
of the unobserved information is represented by these covariates.
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v∗(θ|β̄∗) =

 π001 + π101 −
λ0(π001 + π101)

λ0 + λ1
−
λ1(π001 + π101)

λ0 + λ1

π110 − q̄∗2(π010 + π110)+
λ0q̄∗2(π010 + π110)

λ0 + λ1
−
λ1(1 − q̄∗2)(π010 + π110)

λ0 + λ1


=

 0

π110 −
λ1(π010 + π110)

λ0 + λ1

 .
Box II.
Table 1
Asymptotic bias of β̂ and γ̂ under different generating models.

µ σ 2 Estimator True value of γ
−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1 0.5 β̂ 0.568 0.362 0.196 0.074 0.000 −0.030 −0.024 0.004 0.038
γ̂ 0.045 0.030 0.015 0.004 0.000 0.005 0.019 0.041 0.067

1 β̂ 0.476 0.302 0.164 0.063 0.000 −0.029 −0.030 −0.014 0.006
γ̂ 0.084 0.053 0.026 0.007 0.000 0.007 0.030 0.065 0.110

2 β̂ 0.361 0.231 0.127 0.051 0.000 −0.028 −0.038 −0.036 −0.032
γ̂ 0.139 0.084 0.039 0.010 0.000 0.011 0.042 0.093 0.160

0 0.5 β̂ 0.157 0.052 −0.006 −0.022 0.000 0.049 0.112 0.172 0.218
γ̂ 0.067 0.041 0.019 0.005 0.000 0.004 0.015 0.030 0.045

1 β̂ 0.131 0.047 −0.001 −0.015 0.000 0.037 0.084 0.131 0.164
γ̂ 0.110 0.065 0.030 0.007 0.000 0.007 0.026 0.053 0.084

2 β̂ 0.100 0.040 0.004 −0.008 0.000 0.022 0.051 0.077 0.093
γ̂ 0.160 0.093 0.042 0.011 0.000 0.010 0.039 0.084 0.139

1 0.5 β̂ −0.231 −0.225 −0.178 −0.100 0.000 0.107 0.207 0.287 0.339
γ̂ 0.067 0.037 0.015 0.003 0.000 0.002 0.008 0.014 0.020

1 β̂ −0.192 −0.186 −0.147 −0.083 0.000 0.090 0.175 0.244 0.288
γ̂ 0.110 0.061 0.026 0.006 0.000 0.005 0.017 0.033 0.049

2 β̂ −0.144 −0.137 −0.108 −0.060 0.000 0.066 0.128 0.176 0.203
γ̂ 0.160 0.090 0.039 0.010 0.000 0.009 0.032 0.065 0.105
By substituting this solution in (29) we have the equation given
in Box II. In particular, the second element is equal to 0 when
γ0 = 0 because in this case πy0y1y2 may be decomposed as the
product between λy0 and πy1y2 . This example shows that, even
with only T = 2 occasions, the method is able to identify the
parameters of the dynamic logit model and consistently estimate
these parameters when γ0 = 0.

When γ0 ≠ 0 we can easily apply the method illustrated in
Section 5.2 to find the asymptotic bias of the proposed estimator. In
particular, suppose that the initial observation has probability 0.5
to be equal to 0 or to 1; moreover, we assume that αi ∼ N(µ, σ 2)
and we compute θ∗ for different values of µ, σ 2, and γ0, with
β0 = 1 in all cases. The results are reported in Table 1 in terms
of asymptotic bias.

5.4. Asymptotic distribution

Regularity conditions for asymptotic normality of the pseudo
conditional estimator θ̂ may be formulated by applying again
the GMM theory; see, in particular, Newey and McFadden (1994,
Sec. 6.1). The following Theorem results, where

d
→ stands for

convergence in distribution and V0(·) stands for variance under the
true model.

Theorem 3. Provided the condition in Theorem 2 holds, we have that
√
n(θ̂ − θ∗)

d
→ N(0,V ∗(θ∗|β̄∗))

as n → ∞, where V ∗(θ∗|β̄∗) is the lower right submatrix of

E0[Hi(β̄∗, θ∗)]
−1V0[gi(β̄∗, θ∗)]{E0[Hi(β̄∗, θ∗)]

−1
}
′.
Note that the lower right submatrix of E0[Hi(β̄∗, θ∗)] is equal to
thematrix F ∗(θ∗|β̄∗) considered above. Moreover, sinceH(β̃, θ̂)/n
converges in probability to E0[Hi(β̄∗, θ∗)] and S(β̃, θ̂)/n converges
in probability to V0[gi(β̄∗, θ∗)], with gi(β̄∗, θ∗) defined in a similar
way as in Section 4.3, the above theorem justifies the validity of the
procedure based on (24) to obtain the standard errors for θ̂.

6. Simulation study of the proposed estimator

In this section, we illustrate a simulation study carried out to
assess the finite sample properties of the proposed pseudo estima-
tor under the dynamic logit model in (2). In order to facilitate the
comparison of our approach with alternative approaches, we fol-
low the same simulation design adopted byHonoré and Kyriazidou
(2000), towhichwe refer for amore detailed description of this de-
sign. The results also concern the confidence intervals that may be
constructed around this estimator, as described in Section 4.3.

6.1. Simulation results

Similarly to Honoré and Kyriazidou (2000) we first consider a
benchmark design and then some extended designs. Under the
benchmark design, each sample is generated from a logit model
with only one covariate which is based on the assumption

yit = 1{αi + xitβ + yi,t−1γ + εit > 0},
i = 1, . . . , n, t = 1, . . . , T ,

with the initial condition

yi0 = 1{αi + xitβ + εit > 0}, i = 1, . . . , n,
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Table 2
Performance of the pseudo conditional estimator under some benchmark simulation designs with T = 3 and β = 1. Percentages are referred to the ratio between the actual
sample size and the nominal one.

γ n Estimation of β Estimation of γ
Mean bias RMSE Median bias MAE Mean bias RMSE Median bias MAE

0.25 250 0.025 0.142 0.009 0.088 −0.012 0.389 −0.017 0.253
(60%) 500 0.009 0.093 0.002 0.062 −0.011 0.282 −0.010 0.195

1000 0.004 0.066 0.001 0.043 0.000 0.195 0.005 0.127
0.50 250 0.025 0.146 0.007 0.087 −0.016 0.394 −0.027 0.257
(57%) 500 0.006 0.094 0.000 0.060 −0.010 0.287 −0.004 0.190

1000 0.002 0.066 −0.002 0.046 −0.003 0.198 −0.001 0.132
1.00 250 0.025 0.151 0.009 0.094 −0.013 0.429 −0.027 0.278
(52%) 500 0.006 0.099 0.001 0.064 −0.017 0.306 −0.023 0.204

1000 −0.001 0.068 −0.003 0.047 −0.009 0.210 −0.010 0.142
2.00 250 0.037 0.181 0.015 0.107 0.022 0.564 −0.022 0.365
(42%) 500 0.011 0.116 −0.002 0.073 −0.014 0.368 −0.024 0.249

1000 −0.005 0.077 −0.012 0.050 −0.028 0.256 −0.033 0.173
Table 3
Performance of the pseudo conditional estimator under some benchmark simulation designs with T = 7 and β = 1. Percentages are referred to the ratio between the actual
sample size and the nominal one.

γ n Estimation of β Estimation of γ
Mean bias RMSE Median bias MAE Mean bias RMSE Median bias MAE

0.25 250 0.007 0.060 0.004 0.042 0.002 0.157 0.004 0.102
(92%) 500 0.004 0.042 0.002 0.028 0.004 0.117 0.004 0.078

1000 0.000 0.030 0.001 0.021 0.000 0.081 0.000 0.055
0.50 250 0.007 0.062 0.005 0.043 0.006 0.160 −0.002 0.106
(91%) 500 0.004 0.042 0.004 0.029 0.006 0.117 0.004 0.078

1000 0.000 0.030 0.000 0.021 0.001 0.084 0.001 0.056
1.00 250 0.009 0.064 0.004 0.042 0.013 0.171 0.003 0.111
(87%) 500 0.005 0.045 0.004 0.030 0.009 0.122 0.004 0.082

1000 −0.001 0.031 −0.001 0.021 0.002 0.088 0.000 0.061
2.00 250 0.010 0.073 0.008 0.050 0.017 0.200 0.009 0.134
(76%) 500 0.008 0.051 0.006 0.034 0.010 0.148 0.005 0.101

1000 0.002 0.035 0.001 0.024 0.004 0.104 0.000 0.069
where T = 3, β = 1, and γ = 0.5. Each covariate xit is drawn from
a Normal distribution with mean 0 and variance π2/3, whereas
each αi is generated as

3
t=0 xit/4.

To study the sensitivity of the results on the simulation design,
we also consider a number of time occasions T equal to 7 and
different values of γ (0.25, 0.5, 1, 2). About the choice of γ , consider
that in typical microeconomic analyses via dynamic logit or probit
models, which are available in the literature, values of the state
dependence parameters result positive and not higher than 2 (on
the logit scale). For instance, Hyslop (1999), in analyzing data about
female participation to the labor market, found that a reliable
estimate of the state dependence parameter is close to 1 on the
probit scale, which corresponds to a value around 1.6 on the logit
scale. Another example is represented by the application described
by Hsiao (2005, Sec. 7.5) about brand choice by a sample of
customers. In this case, reliable estimates of the state dependence
parameter are around 1.2.

Following Honoré and Kyriazidou (2000), we also assume
different distributions for the covariate. In particular we consider
four further designs. In the first one, we generate each xit from a
χ2(1) distribution transformed so to have mean 0 and variance
π2/3. In the second design, themodel is estimatedwith threemore
covariates generated from the same Normal distribution adopted
to generate xit . In the third and fourth designs, the covariate
is generated as xit = ρ(ξ + 0.1t + ζit), with ρ and ξ suitably
chosen and where ζi0, . . . , ζiT follow a Gaussian AR(1) process
with autoregressive coefficient equal to 0.5, normalized so to have
variance π2/3, with T = 3 and T = 7. Finally, following the
suggestion of one of the referees, we also try different ways to
generate the incidental parameters. In particular, we assume αi =

µ + σ
3

t=0 xit/4 for i = 1, . . . , n, with µ = 0, 1, 2 and σ 2
=

0.5, 1, 1.5, 2.
For each model described above, we simulated 1000 samples
of size n, with n = 250, 500, 1000. On the basis of each sample
we estimated the structural parameters of the logit model by the
proposed pseudo conditional estimator θ̂. For these parameters we
also constructed 80% and 95% confidence intervals as described in
Section 4.3. The results in terms of mean bias, root mean squared
error (RMSE), median bias, and median absolute error (MAE) of the
estimators are shown in Tables 2 and 3 for the benchmark design
and in Tables 5 and 7 for the other designs. For each value of γ ,
these tables also show the ratio between the actual sample size and
the nominal sample size n.5 The results, in terms of actual coverage
level of the confidence intervals, are displayed in Table 4 for the
benchmark design and in Table 6 for some of the other designs.

As for the bias of the pseudo conditional estimator β̂ , Tables 2
and 3 show that this bias is always negligible. Moreover, about its
efficiency, we note that both RMSE and MAE decrease with n at
a rate close to

√
n and much faster with T . Both RMSE and MAE

moderately increase with γ . One of the main reasons of this is
that the actual sample size tends to increase with T and decreases
with γ when γ is positive. The picture for the pseudo conditional
estimator γ̂ is quite similar. Its bias is very close to 0; moreover,
both RMSE and MAE of γ̂ moderately increase with γ , decrease as
n grows at a rate close to

√
n and much faster with T .

The good performance of the pseudo estimator is confirmed by
the behavior of the confidence intervals. In particular, as shown in
Table 4, the actual coverage level of the confidence intervals for β
is always very close to the nominal one. Similar conclusions may
be drawn regarding the confidence intervals for γ .

5 This ratio is computed as the expected proportion of response configurations yi
such that 0 < yi+ < T .
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Table 4
Coverage levels of the confidence intervals based on the pseudo conditional
estimator under some benchmark simulation designs, with β = 1.

γ n T = 3 T = 7
Interval for
β

Interval for
γ

Interval for
β

Interval for
γ

80% 95% 80% 95% 80% 95% 80% 95%

0.25 250 0.81 0.96 0.80 0.95 0.80 0.95 0.79 0.94
500 0.81 0.96 0.79 0.95 0.79 0.94 0.80 0.95

1000 0.80 0.95 0.80 0.95 0.81 0.95 0.81 0.96
0.50 250 0.82 0.95 0.81 0.95 0.79 0.96 0.80 0.95

500 0.82 0.95 0.80 0.96 0.80 0.95 0.81 0.95
1000 0.80 0.95 0.80 0.95 0.79 0.95 0.80 0.96

1.00 250 0.82 0.95 0.80 0.95 0.80 0.95 0.81 0.94
500 0.80 0.95 0.80 0.95 0.79 0.96 0.80 0.95

1000 0.79 0.97 0.81 0.95 0.80 0.95 0.80 0.95
2.00 250 0.82 0.96 0.81 0.95 0.81 0.95 0.81 0.95

500 0.82 0.95 0.81 0.95 0.79 0.95 0.81 0.95
1000 0.79 0.95 0.81 0.95 0.81 0.94 0.80 0.94

From Table 5 we observe that, under the simulation designs
based on different distributions for the covariates, the pseudo
conditional estimator has essentially the same behavior it has
under the benchmark design. Even when the estimator performs
worse, in terms of bias and/or efficiency, with respect to the
benchmark design, differences are small. This happens for the
χ2(1) design (limited to the efficiency of β̂) and for the additional
regressors design. Occasionally, the proposed estimator also
performs better than under the benchmark design. Limited to γ̂ ,
this happens, for instance, under the χ2(1) design.

For what concerns the confidence intervals, we observe from
Table 6 that, even under the simulation designs based on
alternative distributions for the covariates, the actual coverage
level is always very close to the nominal level for both parameters
β and γ . This confirms the quality of the method proposed in
Section 4.3 to obtain standard errors and to construct confidence
intervals, already noticed for the benchmark design.

Finally, on the basis of the results in Table 7, we conclude that
the bias and the efficiency of β̂ and γ̂ slightly worsen as the mean
of theαi parameters rises, but they are rather insensible to changes
of the variance.

6.2. Comparison with alternative estimators

An important issue is how the proposed pseudo conditional
estimator performs in comparison to the weighted conditional
estimator of Honoré and Kyriazidou (2000) and the bias corrected
estimator of Carro (2007). We then compare the simulation results
obtained by these authors with those illustrated above. We also
present the results for the infeasible logit estimator that uses the
fixed effect as one of the explanatory variables; see Honoré and
Kyriazidou (2000) for details. This comparison is summarized in
Table 8, which, for certain reference situations and for both β
and γ , shows the median bias and the MAE of our estimator
in comparison to those of the other estimators. For all these
estimators, the table also shows the rate between the actual sample
size and the nominal sample size.6

An advantage of our estimator over the alternative estimators,
in terms of bias and efficiency, clearly emerges from the results
in Table 8. In particular, with respect to the weighted conditional
estimator of Honoré and Kyriazidou (2000), our estimator β̂ of β
always has a smaller median bias and MAE. Moreover, especially

6 For the weighted conditional estimator, this rate is computed as the expected
proportion of pairs of response variables (yis, yit ), 0 < s < t < T , such that
yis + yit = 1.
from the point of view of the efficiency, the advantage of our
estimator increases with γ and n and decreases with T . For
instance, with γ = 2, T = 3, and n = 1000, β̂ has median bias
equal to−0.012 andMAE equal to 0.050; the weighted conditional
estimator, instead, has median bias equal to 0.113 and MAE equal
to 0.136. A similar advantage may be observed in estimating γ .
Even in this case we observe that our estimator γ̂ has always
smaller median bias and MAE than the conditional weighted
estimator. This advantage clearly increases with γ , whereas there
is not a clear trend in T and n.

The main explanation that we can give for the above results is
that the actual sample size exploited in our approach is always
much larger than that exploited in the approach of Honoré and
Kyriazidou (2000). This difference increases with γ and T . For
instance, with γ = 0.5 and T = 3, the actual sample size used
in our approach is about 1.5 times that used in their approach. This
ratio increases to about 2.1 for γ = 0.5 and T = 7 and to 2.2 for
γ = 2 and T = 7. Note however that the gain in median bias and
MAE does not closely follows the gain in the actual sample size.
Therefore, other factors have to be taken into consideration which
affect the performance of the two estimators in away that depends
on both γ and T . We recall, in particular, that the performance
of our estimator depends on the quality of the approximation
we are relying on, whereas the performance of the estimator of
Honoré and Kyriazidou (2000) also depends on the fact that the
response configurations are differentlyweighted on the basis of the
corresponding covariate configurations and that, for T > 3, they
are indeed relying on a pairwise likelihood.

In comparison to the bias corrected estimator of Carro (2007),
our estimator β̂ always has a smaller median bias, but not
always a smaller MAE. At least in terms of efficiency, the relative
performance of the two estimators seems to be rather insensitive
to γ ; moreover, the advantage of our estimator increases with n,
but it has not a clear trend in T . The situation is different when
the parameter of interest is γ . In this case our estimator γ̂ always
outperforms the estimator of Carro (2007) in terms of bias and
efficiency. The advantage of the proposed approach increases with
γ and n and decreases with T and in certain cases is evident. For
instance, with γ = 2, T = 3, and n = 1000, our estimator γ̂
has median bias of −0.033 and MAE equal to 0.173, whereas the
alternative estimator has median bias equal to −1.265 and MAE
equal to 1.252. In order to explain this advantage, we recall that the
approach of Carro (2007) ensures a reduced bias for long panels,
whereas for short panels there may be a strong bias, especially in
estimating γ . In any case, his approach exploits the same actual
sample size as ours.

Finally, the conditional estimator performs quite well in
relation to the infeasible estimator, being better when n is bigger
and T is larger.

7. Extensions

In this Section, we extend the pseudo conditional approach to
twomore general cases. The first case concerns the inclusion, in the
logit model, of more than one lagged response variable among the
regressors, so as to extend the first-order Markovian assumption.
The second case concerns categorical response variables having
more than two categories.

7.1. Inclusion of more lagged response variables

The first-order Markovian assumption for the response vari-
ables is here relaxed to allow for longer dynamics. In particular,
we illustrate the case of two lags.
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Table 5
Performance of the pseudo conditional estimator under different simulation designs, with β = 1 and γ = 0.5. Percentages are referred to the ratio between the actual
sample size and the nominal one.

Type of design n Estimation of β Estimation of γ
Mean bias RMSE Median bias MAE Mean bias RMSE Median bias MAE

χ2(1) 250 0.017 0.160 0.001 0.104 −0.015 0.336 −0.033 0.224
Regressors 500 0.010 0.108 0.001 0.072 −0.013 0.229 −0.016 0.156
(T = 3, 56%) 1000 0.002 0.077 −0.003 0.050 −0.007 0.171 −0.012 0.120

Additional 250 0.050 0.154 0.038 0.094 −0.008 0.421 −0.023 0.290
Regressors 500 0.015 0.096 0.010 0.060 0.000 0.275 −0.008 0.183
(T = 3, 57%) 1000 0.010 0.063 0.010 0.043 −0.016 0.191 −0.016 0.127

Trending 250 0.030 0.170 0.016 0.104 −0.030 0.440 −0.035 0.286
Regressors 500 0.013 0.116 0.002 0.077 −0.030 0.293 −0.025 0.200
(T = 3, 42%) 1000 0.001 0.080 −0.004 0.054 −0.014 0.207 −0.011 0.137

Trending 250 0.006 0.072 0.004 0.050 −0.002 0.180 −0.003 0.117
Regressors 500 0.002 0.049 0.002 0.034 0.000 0.124 0.002 0.078
(T = 7, 78%) 1000 0.000 0.036 −0.001 0.023 −0.001 0.090 −0.004 0.059
Table 6
Coverage levels of the confidence intervals based on the pseudo conditional
estimator under different simulation designs, with β = 1 and γ = 0.5.

Type of design n Interval for β Interval for γ
80% 95% 80% 95%

χ2(1) 250 0.81 0.95 0.80 0.95
Regressors 500 0.82 0.95 0.79 0.95

1000 0.83 0.95 0.80 0.95
Additional 250 0.82 0.95 0.80 0.94
Regressors 500 0.80 0.95 0.80 0.95

1000 0.80 0.95 0.79 0.95
Trending 250 0.82 0.96 0.80 0.95
Regressors 500 0.81 0.95 0.81 0.95
(T = 3) 1000 0.79 0.95 0.80 0.94
Trending 250 0.80 0.96 0.80 0.94
Regressors 500 0.81 0.95 0.81 0.94
(T = 7) 1000 0.79 0.94 0.79 0.95

Including two lags, the dynamic logit model described in
Section 2.1 becomes

p(yit |αi,Xi, yi,−1, . . . , yi,t−1) = p(yit |αi, xit , yi,t−2, yi,t−1)

=
exp[yit(αi + xit ′β + yi,t−1γ1 + yi,t−2γ2)]

1 + exp(αi + xit ′β + yi,t−1γ1 + yi,t−2γ2)
,

i = 1, . . . , n, t = 1, . . . , T ,

with γ1 and γ2 having an obvious interpretation, and yi,−1
and yi0 denoting the two initial observations, assumed to be
exogenous. Under this assumption, it is straightforward to write
the distribution of yi, given αi, Xi, yi,−1, and yi0, as

p(yi|αi,Xi, yi,−1, yi0)

=

exp

yi+αi +


t
yitxit ′β + yi∗1γ1 + yi∗2γ2



t
[1 + exp(αi + xit ′β + yi,t−1γ1 + yi,t−2γ2)]

,

where yi∗1 =


t yi,t−1yit and yi∗2 =


t yi,t−2yit .
The logarithm of the denominator of the joint probability above

may be approximated by a first-order Taylor-series expansion
around αi = ᾱi, β = β̄, and γ1 = γ2 = 0, obtaining
t

log[1 + exp(αi + xit ′β + yi,t−1γ1 + yi,t−2γ2)]

≈


t

{log[1 + exp(ᾱi + xit ′β̄)] + q̄it [αi − ᾱi + xit ′(β − β̄)]}

+


t

q̄it(yi,t−1γ1 + yi,t−2γ2),
with q̄it defined as in (9). Therefore, after some algebra,we find that
p(yi|αi,Xi, yi,−1, yi0)may be approximated by the equation which
is given in Box III, with zi∗1 and zi∗2 defined in the usual way. The
approximating model is therefore a quadratic exponential model
in which the main effect parameter for yit is equal to αi + xit ′β −

(γ1 + γ2)


t q̄it when t = 1, . . . , T − 2, to αi + xit ′β − γ1


t q̄it
when t = T − 1, and to αi + xit ′β when t = T ; moreover, the two-
way interaction effect for (yis, yit) is equal to γ1 when t = s+ 1, to
γ2 when t = s + 2, and to 0 otherwise.

The main advantage of the approximating model is again
that of having a minimal sufficient statistic for the individual
parameters αi. These sufficient statistics are yi+, i = 1, . . . , n, so
that the conditional distribution of yi given Xi, yi,−1, yi0, and yi+
does not depend on αi. Consequently, the structural parameters
may be estimated by maximizing the pseudo likelihood based
on this conditional distribution in a way similar to that outlined
in Section 4.1. The resulting pseudo conditional estimator has
essentially the same asymptotic properties of the initial pseudo
conditional likelihood estimator; see Section 5.

7.2. Dealing with response variables having more categories

When the response variables have more than two categories,
and these categories are ordered, the formulation in Section 2.1
may be naturally extended by using in (1) a different definition
for the indicator function. More precisely, let J denote the number
of response categories, from 1 to J . Then, the indicator function
to be used is such that it yields j when its argument, in our case
αi + xit ′β + yi,t−1γ + εit , is between two cutpoints cj−1 and cj,
with c0 = −∞ and cJ = ∞; more sophisticated ways may be
also adopted to include state dependence. When the errors terms
εit are assumed to have a logistic distribution, a model that may be
referred to as the dynamic ordered logit model results. Under this
model, we have an expression of type (2) for the joint probability
of yi given Xi and yi0 which, however, is based on cumulative (or
global) logits. For the definition of logits of this type seeMcCullagh
(1980) and Agresti (2002).

To apply the proposed approach to estimate the above model
it is convenient to follow a general idea found in the literature
(Mukherjee et al., 2008; Baetschmann et al., 2011), which consists
of collapsing the response categories in different ways, so as to
make the response variables binary. In particular, for j = 1, . . . ,
J − 1, we can transform each yit in the binary response variable y(j)it
defined as follows

y(j)it =


0 if yit ≤ j,
1 if yit > j.
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Table 7
Performance of the pseudo conditional estimator under different values of mean (µ) and the variance (σ 2) of αi , with T = 3, β = 1, and γ = 1.

σ 2 µ n Estimation of β Estimation of γ
Mean bias RMSE Median bias MAE Mean bias RMSE Median bias MAE

0.5 0 250 0.024 0.144 0.006 0.088 −0.008 0.417 −0.019 0.271
1000 −0.002 0.066 −0.005 0.046 −0.005 0.198 −0.010 0.133

1 250 0.027 0.156 0.008 0.095 −0.033 0.449 −0.063 0.292
1000 −0.002 0.068 −0.003 0.048 −0.034 0.216 −0.036 0.147

2 250 0.044 0.191 0.024 0.119 −0.048 0.598 −0.075 0.374
1000 −0.002 0.081 −0.007 0.055 −0.060 0.275 −0.063 0.193

1 0 250 0.025 0.151 0.009 0.094 −0.013 0.429 −0.027 0.278
1000 −0.001 0.068 −0.003 0.047 −0.009 0.210 −0.010 0.142

1 250 0.027 0.158 0.007 0.097 −0.029 0.470 −0.063 0.319
1000 −0.003 0.070 −0.002 0.047 −0.033 0.225 −0.036 0.149

2 250 0.046 0.199 0.022 0.118 −0.039 0.576 −0.055 0.373
1000 0.001 0.082 −0.005 0.056 −0.056 0.276 −0.049 0.186

1.5 0 250 0.028 0.155 0.009 0.095 −0.024 0.452 −0.035 0.295
1000 −0.002 0.070 −0.003 0.048 −0.012 0.216 −0.008 0.146

1 250 0.034 0.168 0.011 0.103 −0.041 0.490 −0.059 0.321
1000 −0.002 0.074 −0.004 0.047 −0.035 0.226 −0.038 0.145

2 250 0.044 0.198 0.017 0.121 −0.057 0.587 −0.069 0.397
1000 0.000 0.080 −0.003 0.050 −0.057 0.276 −0.059 0.176

2 0 250 0.032 0.160 0.012 0.099 −0.028 0.468 −0.036 0.306
1000 −0.001 0.073 −0.002 0.049 −0.012 0.225 −0.015 0.153

1 250 0.033 0.170 0.010 0.101 −0.038 0.504 −0.072 0.340
1000 −0.001 0.078 −0.003 0.052 −0.035 0.235 −0.039 0.155

2 250 0.042 0.199 0.016 0.118 −0.045 0.577 −0.071 0.400
1000 0.001 0.084 −0.003 0.053 −0.055 0.274 −0.060 0.178
p∗(yi|αi,Xi, yi,−1, yi0) =

exp

yi+αi +


t
yitxit ′β −


t>1

q̄ityi,t−1γ1 −

t>2

q̄ityi,t−2γ2 + yi∗1γ1 + yi∗2γ2



z
exp


z+αi +


t
ztxit ′β −


t>1

q̄itzt−1γ1 −

t>2

q̄itzt−2γ2 + zi∗1γ1 + zi∗2γ2

 ,
Box III.
Then, for each of these dichotomizations we obtain a pseudo
conditional log-likelihood as in (15), denoted by ℓ∗(j)(θ|β̄), with β̄
suitably chosen. Then, we define an overall pseudo conditional log-
likelihood function as

ℓ∗(θ|β̄) =


j

ℓ∗(j)(θ|β̄).

This function is maximized with respect to θ by a simple
Newton–Raphson algorithm. Note that θ also includes the
cutpoints c1, . . . , cJ−1, which are then parameters to estimate.
Even if a deeper study is necessary, the resulting estimator is
expected to have asymptotic properties similar those illustrated in
Section 5.

Alternatively, the dynamic logit model may be extended by
assuming

p(yit |αi,Xi, yi0, . . . , yi,t−1) = p(yit |αi, xit , yi,t−1)

=
exp(αiyit + xit ′βyit + γyi,t−1yit )

j
exp(αij + xit ′βj + γyi,t−1j)

,

i = 1, . . . , n, t = 1, . . . , T .

This is the dynamic multinomial logit model, which is based on the
incidental parameters αij, i = 1, . . . , n, j = 1, . . . , J , and the
structural parameters βj, j = 1, . . . , J , and γhj, h, j = 1, . . . , J .
Suitable constraints, such as β1 = 0, are assumed on these
parameters in order to ensure identifiability.

Under the above formulation, the method illustrated in Sec-
tion 4 may be directly applied in order to derive an approxima-
tion of the joint probability of yi given Xi and yi0. In particular,
it may be easily shown that the approximating model has again
sufficient statistics for the incidental parameters αij which are
y(j)i+ =


t 1{yit = j}, i = 1, . . . , n, j = 1, . . . , J . In practice, y(j)i+ is

equal to the number of response variables yit which, during the pe-
riod of observation, are equal to j. On the basis of the log-likelihood
resulting from conditioning on these sufficient statistics, we ob-
tain a pseudo conditional estimator of the structural parameters.
We defer the study of the properties of this estimator to future re-
search.

8. Conclusions

In this paper, we propose a pseudo conditional likelihood
approach for a dynamic logit model which allows for unobserved
heterogeneity and individual covariates. The proposed approach
is based on approximating this model, which is referred to as the
true model, by a version of the quadratic exponential model (Cox,
1972), which corresponds to the approximating model. On the basis
of the latter we construct a pseudo conditional likelihood which
does not depend on the incidental parameters for the unobserved
heterogeneity. This is obtained by conditioning on simple sufficient
statistics which are the sums of the response variables for every
sample unit. The pseudo conditional estimator of the structural
parameters, for the covariates and the state dependence, is
obtained by maximizing the conditional log-likelihood of the
approximating model, given the sufficient statistics, by means of
a Newton–Raphson algorithm.

The main feature of the above estimator is that it is simpler
to use and performs better than alternative estimators proposed
in the literature. In particular, with respect to the weighted
conditional estimator of Honoré and Kyriazidou (2000), whichmay
be considered as a benchmark in this literature, our estimator:
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Table 8
Comparison between the infeasible logit estimator (In), the estimator of Honoré and
Kyriazidou (2000, HK), the estimator of Carro (2007, C), and the proposed pseudo
conditional estimator (P). Percentages in the first two columns are referred to actual
sample size under the last three approaches (the first to the HK estimator and the
second to the C and P estimators).

γ T n Estimator Estimation of β Estimation of γ
Median
bias

MAE Median
bias

MAE

0.5 3 250 In 0.006 0.051 −0.005 0.103
HK 0.076 0.154 −0.039 0.403

(37%–57%) C −0.054 0.068 −0.554 0.554
P 0.007 0.087 −0.027 0.257

1000 In 0.000 0.026 −0.002 0.051
HK 0.038 0.086 −0.035 0.178
C −0.057 0.057 −0.563 0.563
P −0.002 0.046 −0.001 0.132

7 250 In 0.002 0.033 −0.004 0.063
HK 0.014 0.050 −0.053 0.131

(43%–91%) C 0.012 0.039 −0.106 0.127
P 0.005 0.043 −0.002 0.106

1000 In 0.000 0.018 −0.001 0.031
HK 0.009 0.027 −0.041 0.075
C 0.015 0.022 −0.097 0.098
P 0.000 0.021 0.001 0.056

2 3 250 In 0.006 0.057 0.003 0.120
HK 0.196 0.251 −0.056 0.620

(26%–42%) C −0.086 0.079 −1.181 0.990
P 0.015 0.107 −0.022 0.365

1000 In 0.001 0.025 0.002 0.061
HK 0.113 0.136 −0.148 0.321
C −0.061 0.060 −1.265 1.252
P −0.012 0.050 −0.033 0.173

7 250 In 0.005 0.039 −0.003 0.075
HK 0.016 0.064 −0.195 0.227

(34%–76%) C 0.019 0.045 −0.226 0.227
P 0.008 0.050 0.009 0.134

1000 In −0.001 0.018 −0.002 0.038
HK 0.016 0.034 −0.160 0.164
C 0.016 0.023 −0.218 0.218
P 0.001 0.024 0.000 0.069

(i) does not require a kernel function for weighting the response
configurations and (ii) it may be also used with at least two time
occasions, instead of at least three, and in the presence of time
dummies. A more important aspect is that our estimator usually
has a smaller bias and a greater efficiency. This conclusion is based
on a simulation study that we performed along the same lines
as Honoré and Kyriazidou (2000). In particular, we notice that
our estimator has a surprisingly low bias under each scenario
considered in the simulation study. It also has a root mean square
error and a median absolute error that decrease, as n grows, at a
rate close to

√
n. Moreover, the advantage in terms of bias and

efficiency over the estimator of Honoré and Kyriazidou (2000)
is higher when there is a strong state dependence. An intuitive
explanation of the better performance of our approach is that it
is based on a conditional likelihood to which a larger number
of response configurations contribute (actual sample size) with
respect to the likelihood on which the estimator of Honoré and
Kyriazidou (2000) is based. This conclusion does not contradict
the result of Hahn (2001), who showed that, for the dynamic
logit with time dummies and T = 3, there does not exist any√
n-consistent estimator. In fact, our estimator, being based on a

conditional likelihood of an approximatingmodel, does not belong
to the class of estimators consider byHahn (2001), which are based
on the conditional likelihood of the true model. An advantage,
especially in the estimation of the state dependence parameter,
is also observed in comparison to the bias corrected estimator
proposed by Carro (2007), which for short panels may have a
considerable bias.

In this paper, we also suggest how to obtain standard errors for
the pseudo conditional likelihood estimator. These standard errors
are estimated in a robust way by using a sandwich formula (White,
1982). On the basis of these standard errors we can construct
confidence intervals for the structural parameters of the true
model.

Finally, we outline how to extend the pseudo conditional
likelihood approach to two more complex cases which involve
longer dynamics and categorical response variables (ordinal and
non-ordinal) having more than two categories. We think that it
is also possible to extend the proposed approach to other models,
such as the dynamic probit model, but we leave this extension to
future research.

Appendix. Blocks of the second derivative matrix Hi(β̄, θ)

We have that

∇β̄β̄ℓi(β̄) = A(Xi)Vβ̄[u(yi)|Xi, yi0, yi+]A(Xi)
′,

where u(yi) = (yi2, . . . , yiT )′, A(Xi) = XiD′, and Vβ̄(·) denotes the
variance under the static logit model. Moreover, we have that

∇θθℓ
∗

i (θ|β̄) = A∗(Xi)V ∗

θ|β̄
[u∗(yi0, yi)|Xi, yi0, yi+]A∗(Xi)

′.

Finally, the block ∇θβ̄ℓ
∗

i (θ|β̄) is rather complicated to compute
analytically. Therefore, we prefer to rely on a numerical derivative
of the score of θ with respect to β̄.
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Abstract

We illustrate the R package cquad for conditional maximum likelihood estimation of
the quadratic exponential (QE) model proposed by Bartolucci and Nigro (2010) for the
analysis of binary panel data. The package also allows us to estimate certain modified
versions of the QE model, which are based on alternative parametrizations, and it includes
a function for the pseudo-conditional likelihood estimation of the dynamic logit model,
as proposed by Bartolucci and Nigro (2012). We also illustrate a reduced version of this
package that is available in Stata. The use of the main functions of this package is based
on examples using labor market data.

Keywords: dynamic logit model, pseudo maximum likelihood estimation, quadratic exponen-
tial model, state dependence.

1. Introduction

With the growing number of panel datasets available to practitioners and the recent de-
velopment of related statistical and econometric models, ready-to-use software to estimate
non-linear models for binary panel data is now essential in applied research. In particular,
the panel structure allows for formulations that include both unobserved heterogeneity (i.e.,
time-constant individual intercepts) and the lagged response variable, which accounts for the
so-called state dependence (i.e., how the experience of a certain event affects the probability
of experiencing the same event in the future), as defined in Heckman (1981a).
A simple and, at the same time, interesting approach for the analysis of binary panel data
is based on the dynamic logit (DL) model, which includes individual-specific intercepts and
state dependence. The estimation of such a model may be based either on a random-effects

http://dx.doi.org/10.18637/jss.v078.i07
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or on a fixed-effects formulation. In the first case, individual intercepts are treated as ran-
dom parameters while, in the second, each intercept is considered as a fixed parameter to be
estimated. The fixed-effects approach attracts considerable attention as it requires a reduced
amount of assumptions with respect to the random-effects formulation, based on the inde-
pendence between the individual unobserved effects and the observable covariates, and on the
normality assumption.
For the static fixed-effects logit model (i.e., the DL model without the lagged response variable
among the covariates), it is possible to eliminate the individual intercepts by conditioning on
simple sufficient statistics (Andersen 1970; Chamberlain 1980). In general, the estimator
based on this method is known as conditional maximum likelihood (CML) estimator. The
full DL model, however, does not admit simple sufficient statistics for the individual intercepts
and, therefore, cannot be estimated by CML in a simple way as the static logit model.
The drawback described above is overcome by Bartolucci and Nigro (2010), who develop a
model for the analysis of dynamic binary panel data models based on a Quadratic Exponential
(QE) formulation (Cox 1972), which has the advantage of admitting sufficient statistics for
the unobserved heterogeneity parameters. Therefore, the model parameters can easily be
estimated by the CML method. Recently, further extensions to the approach of Bartolucci
and Nigro (2010) have also been proposed. In particular, Bartolucci and Nigro (2012) propose
a QE model that closely approximates the DL model. Finally, Bartolucci, Nigro, and Pigini
(2017) derive a test for state dependence that is more powerful than the one based on the
standard QE model.
In this paper we illustrate cquad (Bartolucci and Pigini 2017), which is a comprehensive
R (R Core Team 2017) package for the CML estimation of fixed-effects binary panel data
models. In particular, cquad contains functions for the estimation of the static logit model
(Chamberlain 1980), and of the dynamic QE models recently proposed by Bartolucci and
Nigro (2010, 2012) and Bartolucci et al. (2017). A version of the R package cquad, including
its main functionalities, is also available for Stata (StataCorp. 2015; Bartolucci 2015) and is
illustrated here.
As it implements fixed-effects estimators of non-linear panel data models for binary dependent
variables, cquad complements the existing array of R packages for panel data econometrics.
Above all, it is closely related to the plm package (see Croissant and Millo 2008), which
provides a wide set of functions for the estimation of linear panel data models for both
static and dynamic formulations. In addition, cquad shares with plm the peculiarities of
the data frame structure, of the formula supplied to model.matrix, and of the object class
panelmodel. cquad is also related to package nlme (Pinheiro, Bates, DebRoy, Sarkar, and R
Core Team 2017), which implements non-linear mixed-effects models that can be estimated
with longitudinal data.
The Stata module cquad represents an addition to the many existing commands and modules
for panel data econometrics available in this software, such as xtreg and xtabond2 for linear
models, and it complements the available routine for the CML and ML estimation of the
static logit model, namely the native xtlogit. In addition, it relates to the routines and
modules for the estimation of static random-effects binary panel data models, such as the
built-in xtprobit and the module gllamm (2011) for the estimation for generalized linear
mixed models (see Rabe-Hesketh, Skrondal, and Pickles 2005), and the implementation of
dynamic models, in the modules redprob and redpace (see Stewart 2006).
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Finally, a package for the estimation of binary panel data models with similar functionalities
is the DPB function package for gretl (see Lucchetti and Pigini 2015, for details), which
implements the CML estimator for the QE model by Bartolucci and Nigro (2010). A related
package, which however uses a different approach for parameter estimation, is the R package
panelMPL described in Bartolucci, Bellio, Salvan, and Sartori (2016).
The paper is organized as follows. In the next section we briefly review the basic definition of
the DL model and of the different versions of the QE model here considered. We also briefly
review CML and pseudo-CML estimation of the models. Then, in Section 3 we describe the
main functionalities of package cquad for R and the corresponding module for Stata. Finally,
the illustration of the packages by examples is provided in Section 4.
For the purpose of describing cquad functionalities, we use data on unionized workers ex-
tracted from the U.S. National Longitudinal Survey of Youth. In particular, to illustrate the
R package, we use the same data as in Wooldridge (2005), whereas for the Stata module we
employ similar data already available in the Stata repository.

2. Preliminaries
We consider a binary panel dataset referred to a sample of n units observed at T consecutive
time occasions. We adopt a common notation in which yit is the response variable for unit
i at occasion t, with i = 1, . . . , n and t = 1, . . . , T , and xit is the corresponding column of
covariates. In the following we first describe the CML method applied to the logit model, then
we illustrate the DL and QE models for the analysis of dynamic binary panel data models
and inference based on the CML method.

2.1. Conditional maximum likelihood estimation
In order to provide an outline of the CML method by Andersen (1970), in the following we
describe the derivation of the conditional likelihood for the static logit model (Chamberlain
1980), which will be the basic framework for the QE models described later in this section.
Consider the static logit formulation based on the assumption

p(yit|αi,Xi) = exp[yit(αi + x>itβ)]
1 + exp(αi + x>itβ)

, (1)

where αi is the individual specific intercept and vector β collects the regression parameters
associated with the explanatory variables xit. For the joint probability of yi = (yi1, . . . , yiT )>,
this model implies that

p(yi|αi,Xi) =
exp (αiyi+) exp

(∑
t yitx

>
itβ
)

∏
t

[
1 + exp

(
αi + x>itβ

)] ,

where the sum ∑
t and product ∏t range over t = 1, . . . , T and yi+ = ∑

t yit is called the total
score.
It can be shown that yi+ is a sufficient statistic for the individual intercepts αi (Andersen
1970). Consequently, the joint probability of yi, conditional on yi+, does not depend on αi.
In fact, we have

p(yi|αi,Xi, yi+) = p(yi|αi,Xi)
p(yi+|αi,Xi)

,
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where the denominator is the sum of the probabilities of observing each possible vector con-
figuration of binary responses z = (z1, . . . , zT )> such that z+ = yi+, where z+ = ∑

t zt, that
is,

p(yi|αi,Xi, yi+) = p(yi|αi,Xi)∑
z:z+=yi+

p(z|αi,Xi)
,

with

p(z|αi,Xi) =
exp (αiz+) exp

(∑
t ztx

>
itβ
)

∏
t

[
1 + exp

(
αi + x>itβ

)] .

Therefore, the conditional distribution of the vector of responses yi is

p(yi|αi,Xi, yi+) =
exp (αiyi+) exp

(∑
t yitx

>
itβ
)

∏
t

[
1 + exp

(
αi + x>itβ

)] ∏
t

[
1 + exp

(
αi + x>itβ

)]
∑

z:z+=yi+
exp (αiz+) exp

(∑
t z+x>itβ

)
=

exp
(∑

t yitx
>
itβ
)

∑
z:z+=yi+

exp
(∑

t ztx>itβ
) = p(yi|Xi, yi+),

where the individual intercepts αi have been canceled out.
The conditional log-likelihood based on the above distribution can be written as

`(β) =
∑

i

I(0 < yi+ < T ) log p(yi|Xi, yi+),

where the indicator function I(·) is introduced to take into account that observations whose
total score is 0 or T do not contribute to the likelihood. This conditional log-likelihood
can be maximized with respect to β by a Newton-Raphson algorithm, obtaining the CML
estimator β̂. Expressions for the score vector and information matrices can be derived using
the standard theory on the regular exponential family (Barndorff-Nielsen 1978).

2.2. Dynamic logit model

The DL model (Hsiao 2005) represents an interesting dynamic approach for binary panel data
as it includes, apart from the observable covariates, both individual specific intercepts and
the lagged response variable. Its formulation is a simple extension of Equation 1 with also
yi,t−1 in the set of covariates.
For a sequence of binary responses yit, t = 1, . . . , T , referred to the same unit i, and the
corresponding covariate vectors xit, the conditional distribution of a single response is

p(yit|αi,Xi, yi0, . . . , yi,t−1) = exp[yit(αi + x>itβ + yi,t−1γ)]
1 + exp(αi + x>itβ + yi,t−1γ)

, (2)

where γ is the regression coefficient for the lagged response variable measuring the true state
dependence.
The inclusion of the individual intercept αi for the unobserved heterogeneity in a dynamic
model raises the so-called “initial conditions” problem (Heckman 1981b), which concerns
the correlation between time-invariant effects and the initial realization of the outcome, yi0.
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However, with a fixed-effects approach, individual unobserved effects are treated as fixed
parameters and the initial observation can be considered as given. The distribution of the
vector of responses yi conditional on yi0 is

p(yi|αi,Xi, yi0) =
exp

(
yi+αi +∑

t yitx
>
itβ + yi∗γ

)
∏

t

[
1 + exp

(
αi + x>itβ + yi,t−1γ

)] , (3)

where yi∗ = ∑
t yi,t−1yit.

Differently from the static logit model in Equation 1, the full DL model does not admit
sufficient statistics for the individual parameters αi. Therefore, CML inference is not viable
in a simple form, but can only be derived in the special case of T = 3 and in absence
of explanatory variables (Chamberlain 1985). Honoré and Kyriazidou (2000) extend this
approach to include covariates in the regression model, so that parameters are estimated by
CML on the basis of a weighted conditional log-likelihood. However, their approach presents
some limitations; mainly, discrete covariates cannot be included in the model specification
and, although the estimator is consistent, its rate of convergence to the true parameter value
is slower than

√
n.

2.3. Quadratic exponential models

The shortcomings of the fixed-effects DL model can be overcome by the approximating QE
model defined in Bartolucci and Nigro (2010), based on the family of distributions for mul-
tivariate binary data formulated by Cox (1972). The QEext model directly formulates the
conditional distribution of yi as follows:

p(yi|δi,Xi, yi0) =
exp

[
yi+δi +∑

t yitx
>
itη1 + yiT

(
φ+ x>iTη2

)
+ yi∗ψ

]
∑
z exp[z+δi +∑

t ztx>itη1 + zT

(
φ+ x>iTη2

)
+ zi∗ψ]

, (4)

where δi is the individual specific intercept, ∑z ranges over the possible binary response
vectors z, and zi∗ = yi0z1+∑t>1 zt−1zt. The parameter ψ measures the true state dependence
and vector η1 collects the regression parameters associated with the covariates. Here we
consider φ and η2 as nuisance parameters. We refer the reader to Bartolucci and Nigro
(2010) for the discussion on the interpretation of these parameters.
The QE model allows for state dependence and unobserved heterogeneity, other than the
effect of observable covariates, some of which may be discrete. Moreover, it shares several
properties with the DL model:

1. for t = 2, . . . , T , yit is conditionally independent of yi0, . . . , yi,t−2, given Xi, yi,t−1, and
αi or δi, under both models;

2. for t = 1, . . . , T , the conditional log-odds ratio for (yi,t−1, yit) is constant:

log p(yit = 1|δi,Xi, yi,t−1 = 1)p(yit = 0|δi,Xi, yi,t−1 = 0)
p(yit = 0|δi,Xi, yi,t−1 = 1)p(yit = 1|δi,Xi, yi,t−1 = 0) = ψ,

while in the DL model it is constant and equal to γ.

Differently from the DL model, the QE model does admit a sufficient statistic for the individ-
ual intercepts δi. The parameters for the unobserved heterogeneity are removed by condition
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on the total score yi+. In particular, following the same derivations as in Section 2.1, we
obtain:

p(yi|Xi, yi0, yi+) = exp[∑t yitx
>
itη1 + yiT (φ+ x>iTη2) + yi∗ψ]∑

z:z+=yi+ exp[∑t ztx>itη1 + zT (φ+ x>iTη2) + zi∗ψ]
. (5)

The parameter vector θ = (η>1 , φ,η>2 , ψ)> can be estimated by maximizing the conditional
log-likelihood based on Equation 5, that is,

`(θ) =
∑

i

I(0 < yi+ < T ) log p(yi|Xi, yi0, yi+).

As for the static logit model, this maximization may simply be performed by a Newton-
Raphson algorithm, and the resulting estimator θ̂ = (η̂>1 , φ̂, η̂>2 , ψ̂)> is

√
n-consistent and has

asymptotic normal distribution. For the derivation of the score vector and the information
matrix and of the expression for the standard errors, we refer the reader to Bartolucci and
Nigro (2010).
A simplified version of the QEext model can be derived by assuming that the regression
parameters are equal for all time occasions. The joint probability of the individual outcomes
of this model, which we will refer to as QEbasic hereafter, is expressed as

pb(yi|Xi, yi0, yi+) = exp(∑t yitx
>
itη + yi∗ψ)∑

z:z+=yi+
exp(∑t ztx>itη + zi∗ψ)

. (6)

In the same way as for the QEext model, a
√
n-consistent estimator of θ = (η>, ψ)> can

be obtained by maximizing the conditional log-likelihood based on (6) by a Newton-Raphson
algorithm.
Finally, Bartolucci et al. (2017) introduce a test for state dependence based on a modified
version of the QEbasic model, named QEequ hereafter. The joint probability of yi is defined
as

pe(yi|δi,Xi, yi0) = exp(yi+δi +∑
t yitx

>
itη + ỹi∗ψ)∑

z exp(z+δi +∑
t ztx>itη + z̃i∗ψ)

, (7)

where ỹi∗ = ∑
t I{yit = yi,t−1} and z̃i∗ = I{z1 = yi0} + ∑

t>1 I{zt = zt−1}. The difference
with the QE models described earlier is in how the association between the response variables
is formulated: this modified version is based on the statistic ỹi∗ that, differently from yi∗, is
equal to the number of consecutive pairs of outcomes that are equal each other, regardless of
whether they are 0 or 1. This allows us to use a larger set of information with respect to the
QEext and QEbasic in testing for state dependence.
Conditioning on the total score yi+, the expression for the joint probability becomes

pe(yi|Xi, yi0, yi+) = exp(∑t yitx
>
itη + ỹi∗ψ)∑

z:z+=yi+
exp(∑t ztx>itη + z̃i∗ψ)

. (8)

In the same way as for the QEext and QEbasic model, θ = (η>, ψ)> can be consistently
estimated by CML and, in particular, by maximizing the conditional log-likelihood based on
(8), obtaining θ̂e = (η̂e, ψ̂e).
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Once the parameters in Equation 7 are estimated, a t-statistic for H0 : ψ = 0 is

W = ψ̂e

se(ψ̂e)
, (9)

where se(·) is the standard error derived using the sandwich estimator; see Bartolucci et al.
(2017) for the complete derivation of score, information matrix, and variance-covariance ma-
trix.
Under the DL model, and provided that the null hypothesis H0 : γ = 0 holds, the test statistic
W has asymptotic standard normal distribution as n → ∞. If γ 6= 0, W diverges to +∞ or
−∞ according to whether γ is positive or negative.

2.4. Pseudo-conditional maximum likelihood estimation

In order to estimate the structural parameters of the DL model, Bartolucci and Nigro (2012)
propose a pseudo-CML estimator based on approximating this model by a QE model of the
type described in Section 2.3. The proposed approximating model also has the advantage of
admitting a simple sufficient statistic for each individual intercept and its parameters share
the same interpretation as the true DL model.
The approximating model is derived from a linearization of the log-probability of the DL
model defined in Equation 3, that is,

log p(yi|αi,Xi, yi0) = yi+αi +
∑

t

yitx
>
itβ + yi∗γ −

∑
t

log[1 + exp(αi + x>itβ + yi,t−1γ)].

The non-linear component is approximated by a first-order Taylor series expansion around
αi = ᾱ, β = β̄, and γ = 0:∑

t

log[1 + exp(αi + x>itβ + yi,t−1γ)] ≈
∑

t

{
log

[
1 + exp

(
ᾱi + x>it β̄

)]
+ q̄it

[
αi − ᾱi + x>it(β − β̄)

]}
+ q̄i1yi0γ +

∑
t>1

q̄ityi,t−1γ,

where q̄it = exp(ᾱi + x>it β̄)/[1 + exp(ᾱi + x>it β̄)]. Under this approximating model, referred
to QEpseudo hereafter, the joint probability of yi is

pp(yi|αi,Xi, yi0) = exp(yi+αi +∑
t yitx

>
itβ −

∑
t q̄ityi,t−1γ + yi∗γ)∑

z exp(z+αi +∑
t ztx>itβ −

∑
t q̄itzi,t−1γ + zi∗γ)

. (10)

Given αi and Xi, the above model corresponds to a quadratic exponential model (Cox 1972)
with second-order interactions equal to γ, when referred to consecutive response variables,
and to 0 otherwise.
Under the approximating model, each yi+ is a sufficient statistic for the incidental parameter
αi. By conditioning on the total scores, the joint probability of yi becomes:

pp(yi|Xi, yi0, yi+) = exp(∑t yitx
>
itβ −

∑
t q̄ityi,t−1γ + yi∗γ)∑

z:z+=yi+
exp(∑t ztx>itβ −

∑
t q̄itzi,t−1γ + zi∗γ)

, (11)

where the individual intercepts αi cancel out.
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A pseudo-CML estimator based on the approximating model described in Equation 11 is
introduced by Bartolucci and Nigro (2012). The estimator is based on the following two-step
procedure:

1. A preliminary estimate of the regression parameter β, β̃, is computed by maximizing the
conditional log-likelihood of the static logit model described in Section 2.1. In addition,
the probabilities q̄it, for i = 1, . . . , n and t = 2, . . . , T , are computed with β̄ = β̂ and ᾱi

equal to its maximum likelihood estimate under the static logit model.

2. The parameter vector θ = (β>, γ)> is estimated by maximizing the conditional log-
likelihood

`p(θ|β̄) =
∑

i

I{0 < yi+ < T} log pp(yi|Xi, yi0, yi+).

The maximization of `p(θ|β̄) is possible by a simple Newton-Raphson algorithm, resulting
in the pseudo-CML estimator θ̂p = (β̂>p , γ̂p)> of the structural parameters of the DL model.
For asymptotic results and computation of standard errors we refer the reader to Bartolucci
and Nigro (2012).

3. Package description
Here we describe the main functionalities of the R package cquad and then the corresponding
commands of the cquad module implemented in Stata.

3.1. The R package

The cquad interface

Package cquad includes several functions, the majority of which are called by the main in-
terface cquad. The first argument of the cquad function is a formula that shares the same
syntax with that of the plm package. For instance, using the sample data on unionized
workers, Union.RData, a simple function call is

R> cquad(union ~ married, Union)

where the dependent variable must be a numeric binary vector. In general, as in plm and
differently from lm, the formula can also recognize the operators lag, log, and diff that can
be supplied directly without additional transformations of the covariates.
The second argument supplied to cquad is the data frame. As in plm, the data must have
a panel structure, that is the data frame has to contain an individual identifier and a time
variable as the first two columns. For instance, the data frame Union has the following
structure:

R> head(Union[c(1, 2)])
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nr year
1 13 1980
2 13 1981
3 13 1982
4 13 1983
5 13 1984
6 13 1985

where nr is the individual identifier and year provides the time variable. As Union already
has a panel structure, cquad can be called directly. Differently, if the dataset does not contain
the individual and time indicators, cquad sets the panel structure and creates automatically
the first two variables, provided index is supplied, namely the number of cross-section ob-
servations in the data. As an example, the dataset Wages, supplied by plm and containing
595 individuals observed over 7 periods, does not have a panel structure, which however is
created by cquad as follows:

R> cquad(union2 ~ married, Wages, index = 595)

Package cquad uses the same function as plm to impose the panel structure on a data frame,
called plm.data. Indeed, this function can also be used to set the panel structure to the data
frame, which can then be supplied to cquad without the index argument. For instance:

R> Wages <- plm.data(Wages, 595)

produces

R> head(Wages)

id time exp wks bluecol ind south smsa married sex union ed black lwage
1 1 1 3 32 no 0 yes no yes male no 9 no 5.56068
2 1 2 4 43 no 0 yes no yes male no 9 no 5.72031
3 1 3 5 40 no 0 yes no yes male no 9 no 5.99645
4 1 4 6 39 no 0 yes no yes male no 9 no 5.99645
5 1 5 7 42 no 1 yes no yes male no 9 no 6.06146
6 1 6 8 35 no 1 yes no yes male no 9 no 6.17379

where the factors id and time have been created and added to the data frame.
In the examples above, both data frames refer to balanced panels. Nevertheless, cquad also
handles unbalanced panels.
Each of the models described in Section 2 is estimated by cquad by supplying a dedicated
string to the function argument model. In particular, we can estimate:

• the fixed-effects static logit model by Chamberlain (1980) (model = "basic", default);

• the simplified QE model, QEbasic (model = "basic", dyn = TRUE);

• the QEext model proposed by Bartolucci and Nigro (2010) (model = "extended");
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• the modified version of the QE model, QEequ proposed in Bartolucci et al. (2017)
(model = "equal");

• the pseudo-CML estimation of the DL model based on the approach of Bartolucci and
Nigro (2012) (model = "pseudo").

As an optional argument, the cquad function can also be supplied with an n-dimensional
vector of individual weights; the default value is rep(1, n).
The results of the calls to cquad are stored in an object of class panelmodel. The returned
object shares only some elements with a panelmodel object and contains additional ones due
to the peculiarities of CML inference.
The elements in common with the object panelmodel, as described in plm, are coefficients,
vcov, and call. The vector coefficients contains the estimates of: the k-dimensional
vector β, for the static logit; the (k + 1)-dimensional vector θ = (η>, ψ)> for the dynamic
models QEbasic, the conditional probability of which is defined in Equation 6, and QEequ
in Equation 7, respectively; the (2k + 2)-dimensional vector θ = (η>1 , φ,η>2 , ψ)> for the
QEext model in Equation 4; the (k + 1)-dimensional vector θ = (β>, γ)> in Equation 10 for
the pseudo-CML estimator of the DL model. The matrix vcov contains the corresponding
asymptotic variance-covariance matrix for the parameter estimates. Finally, call contains the
function call to the sub-routines required to fit each model, namely cquad_basic, cquad_ext,
cquad_equ, or cquad_pseudo.
The output of cquad does not provide fitted values nor residuals: as discussed in Section 2,
the CML estimation approach is based on eliminating the individual intercepts in each model,
and this does not allow for the computation of predicted probabilities. Similarly, residuals
are not a viable tool for standard inference. On the other hand, we supply the object with
estimated quantities useful for inference and diagnostics within the CML estimation approach.
The asymptotic standard errors associated with the estimated coefficients are collected in the
vector se and the robust standard errors (White 1980) in vector ser. For the pseudo-CML
estimator, the standard errors contained in the vector ser are corrected for the presence of
estimated regressors (see Bartolucci and Nigro 2012, for the detailed derivation of the two-step
variance-covariance matrix). The function output also provides the matrix scv containing the
individual scores and the matrix J containing the Hessian of the log-likelihood function. In
addition, cquad returns the conditional log-likelihood at convergence (lk) for each of the
fitted models. Finally, it contains the n-dimensional vector Tv of the number of observations
for each unit.

Simulate data from the DL model

Package cquad also contains function sim_panel_logit, which allows the user to generate
a binary vector from a DL data generating process. This function requires in input the list
of unit identifiers in the panel, which are collected in vector id having length equal to the
overall number of observations n × T = r. As other inputs, the function requires the n-
dimensional vector of the individual specific intercepts that must be somehow generated, for
instance drawing them from a standard normal distribution, and the matrix of covariates (if
they exist) that has dimension r × k, where k is the number of covariates. Each row of this
matrix contains a vector of covariates xit arranged according to vector id. Finally, in input
the function requires the vector of structural parameters, denoted by eta, that is, β for the
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static logit model and (β>, γ)> for the DL model; the model of interest is specified by the
optional argument dyn.
As output values, function sim_panel_logit returns a list containing two vectors, pv and yv.
The first contains the success probability computed according to the DL model corresponding
to each row of matrix X and accounting for the corresponding individual intercept in al. Vector
yv contains the binary variable which is randomly drawn from this distribution.

3.2. The Stata module

The cquad module in Stata consists of four Mata routines for the estimation by CML of the
QE models described in Section 2.3. It contains four commands with the syntax

cquadcmd depvar id [indepvars]

where cmd has to be substituted with the string corresponding to the type of model to be
estimated. In particular:

• cquadext fits the QEext model of Bartolucci and Nigro (2010) defined in Equation 4;

• cquadbasic estimates the parameters of the simplified QE model, QEbasic, the condi-
tional probability of which is defined in Equation 6. Differently from the R package,
cquadbasic fits only the dynamic QE model, as the static logit model can estimated
by xtlogit;

• cquadequ fits the modified QE model defined in Equation 7 proposed by Bartolucci
et al. (2017);

• cquadpseudo fits the pseudo-CML estimator proposed by Bartolucci and Nigro (2012)
for the parameters in Equation 10.

In addition, depvar is the series containing the binary dependent variable, and id is the
variable containing the list of reference units uniquely identifying individuals in the panel
dataset. Optionally a list of covariates [indepvars] can be supplied.
The four commands return an eclass object with the estimation results. Scalar e(lk) con-
tains the final conditional log-likelihood and macro e(cmd) holds the function call. Moreover,
matrix e(be) contains the estimated coefficients and it is of dimension (2k + 2) × 1 for
cquadext, or of dimension (k + 1)× 1 for cquadbasic, cquadequ, and cquadpseudo. Matri-
ces e(se) and e(ser) contain the corresponding estimated asymptotic and robust standard
errors, respectively. Finally, matrices e(tstat) and e(pv) collect the t test statistics and the
corresponding p values.

4. Examples
In the following we illustrate package cquad by means of three applications. In particular, we
show how to compute the CML estimators for the QE models and the pseudo-CML estimator
in R and Stata using longitudinal data on unionized workers extracted from the U.S. National
Longitudinal Survey of Youth, which has been employed in several applied works to illustrate
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dynamic binary panel data models (Wooldridge 2005; Stewart 2006; Lucchetti and Pigini
2015). Moreover, we propose a simulation example using sim_panel_logit provided in the
R package.

4.1. Use of the Union dataset in R

To illustrate the R package, we use the dataset employed in Wooldridge (2005) and available
in the Journal of Applied Econometrics data archive. The dataset is referred to 545 male
workers interviewed for eight years, from 1980 to 1987. Similarly to the empirical application
in Wooldridge (2005), the variables relevant to our example are a binary variable equal to
1 if the worker’s wage is set by a union, which will be used as the dependent variable, and
a binary variable describing his marital status, used as covariate. The original dataset also
contains information on the race and years of schooling, which however cannot be employed
in our example since they are time-invariant:

nr year black married educ union
1 13 1980 0 0 14 0
2 13 1981 0 0 14 1
3 13 1982 0 0 14 0
4 13 1983 0 0 14 0
5 13 1984 0 0 14 0
6 13 1985 0 0 14 0

Notice that the panel structure required by cquad is already imposed.
Then, in order to fit the static logit model to this data by the CML method, we call cquad
with the following syntax

R> out1 <- cquad(union ~ married + year, Union)

This estimates a logit model with union as the dependent variable and married and time
dummies as covariates, obtaining the following output

Balanced panel data
|--------------|--------------|--------------|
| iteration | lk | lk-lko |
|--------------|--------------|--------------|
| 1 | -740.781 | Inf |
| 2 | -732.45 | 8.3312 |
| 3 | -732.445 | 0.00539603 |
| 4 | -732.445 | 9.75388e-09 |
|--------------|--------------|--------------|

Then, using command summary(out1), we obtain:

Call:
cquad_basic(id = id, yv = yv, X = X, w = w, dyn = dyn)

Log-likelihood:
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-732.4449
est. s.e. t-stat p-value

married 0.298326773 0.1708112 1.746529038 0.080719066
year1981 -0.061754846 0.2061185 -0.299608423 0.764475859
year1982 0.000927442 0.2069901 0.004480611 0.996425002
year1983 -0.155186804 0.2117482 -0.732883615 0.463629417
year1984 -0.107846793 0.2137133 -0.504633157 0.613816517
year1985 -0.442338283 0.2189339 -2.020419690 0.043339873
year1986 -0.608785100 0.2222082 -2.739705640 0.006149423
year1987 -0.015457650 0.2180398 -0.070893720 0.943482341

The output of summary displays the function call, the value of the log-likelihood at conver-
gence, and the estimated coefficients with the corresponding asymptotic standard errors and
t test results. Notice that including variable year among the covariates in the formula leads
cquad to the automatic inclusion of the time dummies in the model specification, except for
year1980 due to collinearity, even though variable year is numeric in the original data frame:

R> str(Union$year)

int [1:4360] 1980 1981 1982 1983 1984 1985 1986 1987 1980 1981 ...

This happens because cquad recognizes the second variable in the data frame as the time
variable, and with the call to plm.data and model.matrix the numeric time variable is
transformed into a factor.
To estimate the dynamic specification of the QEbasic model, cquad needs to be called with
the dyn = TRUE option. In addition, as we are working with a balanced panel, an additional
time dummy must be excluded because the lag of the dependent variable is included in the
conditioning set and the initial time occasion is lost. In this case, we perform this operation
outside the cquad interface

R> year2 <- Union$year
R> year2[year2 == 1980 | year2 == 1981] <- 0
R> year2 <- as.factor(year2)
R> out2 <- cquad(union ~ married + year2, Union, dyn = TRUE)
R> summary(out2)

In the code above, we store the numeric time variable from the original data frame in year2;
then, we set the variable to 0 for two of its values, as we loose one time occasion due to the
dynamic specification and one time effect due to the collinearity of the remaining dummies.
In order to estimate the model with time dummies, we need to convert year2 into a factor:
cquad will not recognize year2 as the time variable since it is not in the data frame. If instead
we leave year in the formula, a warning message is given after convergence and the results
are obtained using the generalized inverse of the Hessian matrix.
The estimation output produced by the above command lines is (iteration logs are omitted
from the output below)

Call:
cquad_basic(id = id, yv = yv, X = X, w = w, dyn = dyn)
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Log-likelihood:
-505.514

est. s.e. t-stat p-value
married 0.13404719 0.1868762 0.7173047 0.4731861145
year21982 0.09160286 0.2441350 0.3752140 0.7075013011
year21983 -0.09896744 0.2258889 -0.4381245 0.6612960556
year21984 0.09917729 0.2254660 0.4398770 0.6600262259
year21985 -0.27210110 0.2309277 -1.1782956 0.2386787776
year21986 -0.52465221 0.2328383 -2.2532900 0.0242408710
year21987 0.81055556 0.2265106 3.5784449 0.0003456447
y_lag 1.47082575 0.1528797 9.6208037 0.0000000000

Although cquad with model = "basic" (default) and dyn = TRUE fits the simplified version
of the QE model (i.e., QEbasic), which approximates the true DL model, the obtained results
are in line with the findings on the probability of participating in a union under dynamic
models: there is a positive and significant correlation with the lagged dependent variable
(ψ = 1.471), and the effect of married is not statistically significant.
To fit the QEext model, we need to further exclude the last time value (i.e., 1987): since
there is an intercept term φ in Equation 5, the effect associated with the last time dummy is
not identified with balanced panels:

R> year3 <- Union$year
R> year3[year3 == 1980 | year3 == 1981 | year3 == 1987] <- 0
R> year3 <- as.factor(year3)
R> out3 <- cquad(union ~ married + year3, Union, model = "extended")

By typing summary(out3) we obtain

Call:
cquad_ext(id = id, yv = yv, X = X, w = w)

Log-likelihood:
-504.2864

est. s.e. t-stat p-value
married 0.01958449 0.2008834 0.09749182 0.92233583
year31982 0.09808421 0.2442447 0.40158167 0.68799192
year31983 -0.08051308 0.2262232 -0.35590102 0.72191469
year31984 0.12301583 0.2259423 0.54445680 0.58612717
year31985 -0.24494702 0.2314885 -1.05813907 0.28999205
year31986 -0.48914076 0.2339525 -2.09076982 0.03654870
int 0.51995850 0.2952783 1.76091005 0.07825363
diff.married 0.51942916 0.3328688 1.56046215 0.11865071
y_lag 1.47056206 0.1530829 9.60631199 0.00000000

where the additional int and diff. variables represent φ and η2 in Equation 4, respectively.
Similarly, to fit the QEequ model defined in Equation 7 and display the results, the command
lines are as follows:
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R> out4 <- cquad(union ~ married + year2, Union, model = "equal")
R> summary(out4)

which returns

Call:
cquad_equ(id = id, yv = yv, X = X, w = w)

Log-likelihood:
-505.514

est. s.e. t-stat p-value
married 0.13404719 0.18687622 0.7173047 0.47318611
year21982 0.09160286 0.24413496 0.3752140 0.70750130
year21983 -0.09896744 0.22588886 -0.4381245 0.66129606
year21984 0.09917729 0.22546598 0.4398770 0.66002623
year21985 -0.27210110 0.23092771 -1.1782956 0.23867878
year21986 -0.52465221 0.23283830 -2.2532900 0.02424087
year21987 0.07514269 0.21352948 0.3519078 0.72490741
y_lag 0.73541287 0.07643986 9.6208037 0.00000000

Notice that there is a marked difference in the estimated coefficient associated with the lagged
dependent variable. In model QEequ, the association between yit and yi,t−1 is different from
that of the standard formulation of the QE model so as to exploit more information in testing
for state dependence (see Section 2.3). Indeed, the t test statistic associated with y_lag is
referred to the test for state dependence described in Equation 9.
In order to fit the pseudo-CML model, cquad needs to be called with model = "pseudo":

R> out5 <- cquad(union ~ married + year2, Union, model = "pseudo")

that produces the output

First step estimation
Balanced panel data
|--------------|--------------|--------------|
| iteration | lk | lk-lko |
|--------------|--------------|--------------|
| 1 | -740.781 | Inf |
| 2 | -732.495 | 8.28629 |
| 3 | -732.49 | 0.00541045 |
| 4 | -732.49 | 9.8679e-09 |
|--------------|--------------|--------------|

Second step estimation
|--------------|--------------|--------------|
| iteration | lk | lk-lko |
|--------------|--------------|--------------|
| 1 | -552.702 | Inf |
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| 2 | -528.266 | 24.4361 |
| 3 | -513.702 | 14.5641 |
| 4 | -509.195 | 4.50721 |
| 5 | -509.192 | 0.00285414 |
| 6 | -509.192 | 1.11389e-08 |
|--------------|--------------|--------------|

The first panel reports the iterations of the first step CML estimation of the regression coef-
ficients in the static logit model, while the second refers to the second step maximization to
obtain the pseudo-CML estimates of the parameters in Equation 10.
After calling summary(out5), the following results are displayed:

Call:
cquad_pseudo(id = id, yv = yv, X = X)

Log-likelihood:
-509.1917

est. s.e. t-stat p-value
married 0.19259731 0.1858896 1.0360844 3.001628e-01
year21982 0.05031661 0.2664274 0.1888567 8.502051e-01
year21983 -0.12381494 0.2092980 -0.5915724 5.541369e-01
year21984 -0.02956563 0.2224643 -0.1329006 8.942720e-01
year21985 -0.43257573 0.2243302 -1.9282989 5.381796e-02
year21986 -0.54727988 0.2212247 -2.4738647 1.336603e-02
year21987 0.17223711 0.2425840 0.7100103 4.776978e-01
y_lag 1.47526322 0.1807924 8.1599843 4.440892e-16

Notice that the estimation results are in agreement with those obtained by fitting the QEext or
the QEbasic models; however they exhibit some differences since the pseudo-CML estimator
is based on the conditional probability in Equation 11 that contains the parameters of the
true DL model. Nevertheless, these results confirm the presence of a high degree of state
dependence in union participation.

4.2. Use of sim_panel_logit to generate dynamic binary panel data

In the following, we illustrate how to perform a simple simulation study on data generated
from a DL model by means of function sim_panel_logit in package cquad. In this example,
we fit the modified QEequ model by CML and study the properties of the test for state
dependence proposed by Bartolucci et al. (2017). The script to replicate the exercise is
reported below

R> require(cquad)
R> n <- 500
R> TT <- 6
R> nit <- 100
R> be <- 1
R> rho <- 0.5
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R> var <- (pi * pi) / 3
R> stdep <- c(0, 1)
R> TEST <- rep(0, nit)
R> for (ga in stdep) {
+ for (it in 1:nit) {
+ label <- 1:n
+ id <- rep(label, each = TT)
+ X <- matrix(rep(0), n * TT, 1)
+ alpha <- rep(0, n)
+ eta <- rep(0, n * TT)
+ e <- rnorm(n * TT) * sqrt(var * (1 - rho^2))
+ j <- 0
+ for (i in 1:n) {
+ j <- j + 1
+ X[j] <- rnorm(1) * sqrt(var)
+ for (t in 2:TT) {
+ j <- j + 1
+ X[j] <- rho * X[j - 1] + e[j]
+ }
+ alpha[i] <- (X[j - 2] + X[j - 1] + X[j]) / 3
+ }
+ cat("sample n. ", it, "\n")
+ data <- sim_panel_logit(id, alpha, X, c(be, ga), dyn = TRUE)
+ yv <- data$yv
+ mod <- cquad(yv ~ X, data.frame(yv, X), index = 500, model = "equal")
+ beta <- mod$coefficients
+ TEST[it] <- beta[length(beta)]/mod$se[length(beta)]
+ }
+ cat(c("gamma =", ga, "\n"))
+ RES <- c(mean(TEST), mean(abs(TEST) > 1.96))
+ names(RES) <- c("t-stat", "rej. rate")
+ print(RES)
+ }

In the first part of the script, we set the simulation parameters for the sample size, number
of time occasions and number of Monte Carlo replications. We also set the parameter values
for the DL model in Equation 2 with one regression parameter β = 1 and one covariate,
generated as an AR(1) process with autocorrelation coefficient ρ = 0.5. In this exercise, we
analyze two scenarios, with the state dependence parameter γ equal to 0 and 1.
In the first part of the script inside the for loops, we generate the identifier id as an n-
dimensional vector, the n×T vector for the single covariate X, and the n-dimensional vector of
individual intercepts alpha, which is computed in a similar manner as in Honoré and Kyriazi-
dou (2000). Lastly, we generate the binary response variable using function sim_panel_logit
described in Section 3.1. As the function returns both the binary variable and the response
probabilities, the dependent variable needs to be retrieved by yv <- data$yv.
Once the data have been generated, we proceed to the estimation of the QEequ model using
cquad with model = "equal" to fit the modified QE model in Equation 7 by CML; we store
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the results for the t test in Equation 9. Finally, we display the results containing the average
value of the test in the 100 sample and the average rejection rate of a bilateral test at the
0.05 significance level. The last part or the script produces the following output:

...

gamma = 0
t-stat rej. rate

-0.1753164 0.0400000

...

gamma = 1
t-stat rej. rate

4.939813 0.990000

where the iteration logs from cquad have been omitted. Under the null hypothesis γ = 0, the
rejection rate is very close to the nominal size of 0.05, while under the alternative hypothesis
γ = 1 the test exhibits good power properties. These results are close to those found by
Bartolucci et al. (2017) in their simulation study, to which we refer the reader for an extension
of this simple design to several other scenarios.

4.3. Analysis of union data in Stata
In the following, we illustrate the Stata module cquad that contains the four commands to fit
the QE models described in Section 2.3 by an example based again on data about unionized
workers. The dataset to replicate this example is already available in the Stata online data
repository and is contained in file union.dta.
The three commands reported below load the dataset, then describe the panel structure,
already in place, and list the variables present in the dataset

webuse union
xtdes
descr

The output generated by these command lines is:

. webuse union
(NLS Women 14-24 in 1968)

. xtdes

idcode: 1, 2, ..., 5159 n = 4434
year: 70, 71, ..., 88 T = 12

Delta(year) = 1 unit
Span(year) = 19 periods
(idcode*year uniquely identifies each observation)
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Distribution of T_i: min 5% 25% 50% 75% 95% max
1 1 3 6 8 11 12

Freq. Percent Cum. | Pattern
---------------------------+---------------------

190 4.29 4.29 | 1111...11.1.11.1.11
129 2.91 7.19 | .......11.1.11.1.11
93 2.10 9.29 | 1..................
78 1.76 11.05 | .......1...........
68 1.53 12.58 | ..11...11.1.11.1.11
64 1.44 14.03 | ...1...11.1.11.1.11
60 1.35 15.38 | .111...11.1.11.1.11
52 1.17 16.55 | 11.................
52 1.17 17.73 | 1111...............

3648 82.27 100.00 | (other patterns)
---------------------------+---------------------

4434 100.00 | XXXX...XX.X.XX.X.XX

. descr

Contains data from http://www.stata-press.com/data/r13/union.dta
obs: 26,200 NLS Women 14-24 in 1968

vars: 8 4 May 2013 13:54
size: 235,800

------------------------------------------------------------------------
storage display value

variable name type format label variable label
------------------------------------------------------------------------
idcode int %8.0g NLS ID
year byte %8.0g interview year
age byte %8.0g age in current year
grade byte %8.0g current grade completed
not_smsa byte %8.0g 1 if not SMSA
south byte %8.0g 1 if south
union byte %8.0g 1 if union
black byte %8.0g race black
------------------------------------------------------------------------
Sorted by: idcode year

The dataset consists of 4434 women between 14 and 24 years old in 1968, interviewed between
1970 and 1988. The panel is unbalanced and the maximum number of occasions of observation
of the same subject is 12. The last part of the output reports the variable description, where
union is the response variable in our exercise, age, grade, not_smsa, and south are the
covariates, while black is excluded from the analysis because of its time-invariant nature.
We first illustrate command cquadbasic to fit the QEbasic model in Equation 6 by CML,
where we include time dummies in the model specification by using the xi and i.year dec-
larations. The command line
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xi: cquadbasic union idcode age grade south not_smsa i.year

produces the following output

. xi: cquadbasic union idcode age grade south not_smsa i.year
i.year _Iyear_70-88 (naturally coded; _Iyear_70 omitted)

Fit (simplified) quadratic exponential model by Conditional Maximum Likelihood
see Bartolucci & Nigro (2010), Econometrica

| lk lk-lk0
------+--------------------------------------------------

1 | -3439.9096 1.000e+10
2 | -3071.6412 368.26839
3 | -3069.0539 2.5872579
4 | -3069.0534 .00050444
5 | -3069.0534 5.775e-11

| est. s.e t-stat. p-value
-------------+--------------------------------------------------

age | .17670917 .1192216 1.4821908 .06914476
grade | -.03658997 .04586492 -.79777692 .21249998
south | -.5191613 .13732314 -3.7805814 .00007823

not_smsa | .12631127 .13146408 .9608044 .16832526
_Iyear_71 | 1.5208636 1.035464 1.4687749 .07094693
_Iyear_72 | 1.1096837 .91812295 1.2086439 .11339984
_Iyear_73 | .90256541 .79733234 1.1319814 .12882112
_Iyear_77 | .1829554 .3308496 .55298662 .29013629
_Iyear_78 | .17904624 .21288676 .8410398 .20016282
_Iyear_80 | .46950024 .0846961 5.5433514 1.484e-08
_Iyear_82 | -.40988205 .28664089 -1.4299497 .07636573
_Iyear_83 | -.95438994 .40301052 -2.3681514 .00893861
_Iyear_85 | -.73765258 .63762525 -1.1568748 .12366176
_Iyear_87 | -1.3247366 .87641421 -1.5115416 .06532525
_Iyear_88 | -.93795347 1.0381108 -.90351959 .1831251

y-lag | 1.5332567 .06307817 24.307248 0

First the iteration logs are reported, then the estimation output is displayed in a standard
fashion, reporting the estimated coefficients for the QEbasic model, along with asymptotic
standard errors, the related t test statistics and p values. Notice that the estimate associated
with ψ in Equation 6 reflects a high degree of positive state dependence, in line with the
well-known results in other applied works.
The extended version of the QE model, QEext, can be fitted in a similar manner, by using
command cquadext:

cquadext union idcode age grade south not_smsa _Iyear_72 _Iyear_73
_Iyear_77 _Iyear_78 _Iyear_80 _Iyear_82 _Iyear_83 _Iyear_85 _Iyear_87
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Notice that here we are not using the xi: prefix and the factor i.year as explanatory variable.
In fact, we list the time dummies separately in order to exclude the dummy for 1988: in the
QEext model, not all the effects associated with the time dummies can be identified, due to
the presence of an intercept term, φ, in the regressors referred to the observation at time T
(see Equation 4).
The above code produces the following output:

. cquadext union idcode age grade south not_smsa _Iyear_72 _Iyear_73
> 2 _Iyear_77 _Iyear_78 _Iyear_80 _Iyear_8 _Iyear_83 _Iyear_85 _Iyear_87

Fit quadratic exponential model by Conditional Maximum Likelihood
see Bartolucci & Nigro (2010), Econometrica

(output omitted)

| est. s.e. t-stat. p-value
---------------+--------------------------------------------------

age | .17308473 .11933765 1.4503782 .07347655
grade | -.04047509 .0465145 -.87016079 .19210627
south | -.51184847 .13953697 -3.6681926 .00012214

not_smsa | .17524652 .13523937 1.2958248 .09751793
_Iyear_72 | -.4644361 .1964388 -2.3642789 .0090326
_Iyear_73 | -.65950516 .27895047 -2.3642375 .00903361
_Iyear_77 | -1.3784265 .72358421 -1.9049981 .02839016
_Iyear_78 | -1.3701126 .84614133 -1.6192479 .05269697
_Iyear_80 | -1.1167485 1.0780889 -1.0358595 .15013386
_Iyear_82 | -1.9383478 1.3150617 -1.4739595 .07024624
_Iyear_83 | -2.4862166 1.433189 -1.7347444 .04139305
_Iyear_85 | -2.293721 1.6709237 -1.3727264 .08491871
_Iyear_87 | -2.8867738 1.9100228 -1.5113819 .06534559
diff-int | -2.9745408 2.2316307 -1.3329001 .0912823
diff-age | .01050808 .02053247 .51177844 .30440304

diff-grade | .01403913 .02483142 .56537754 .2859085
diff-south | -.01017179 .12702618 -.08007635 .46808827

diff-not_smsa | -.24502608 .14435482 -1.6973876 .0448117
diff-_Iyear_72 | 4.5353507 2.3909244 1.8969026 .0289204
diff-_Iyear_73 | 3.213293 2.1675763 1.4824359 .06911217
diff-_Iyear_77 | 2.9858792 2.1187489 1.4092653 .07937837
diff-_Iyear_78 | 2.8557536 2.1441469 1.3318834 .09144926
diff-_Iyear_80 | 3.4787453 2.1165322 1.6436061 .0501288
diff-_Iyear_82 | 2.3113123 2.108686 1.0960913 .13651941
diff-_Iyear_83 | 2.4132524 2.1023472 1.1478848 .12550806
diff-_Iyear_85 | 2.7441521 2.0885294 1.313916 .09443724
diff-_Iyear_87 | 2.6838554 2.079152 1.2908414 .09837934

y-lag | 1.5646588 .06439017 24.299654 0
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where the iteration logs have been omitted for brevity. If the time-dummy associated with
the last observation is not dropped beforehand, a warning message is printed, and the results
are obtained using the generalized inverse of the Hessian.
The modified QE model, QEequ, can be estimated by calling cquadequ:

xi: cquadequ union idcode age grade south not_smsa i.year

. xi: cquadequ union idcode age grade south not_smsa i.year
i.year _Iyear_70-88 (naturally coded; _Iyear_70 omitted)

(output omitted)

| est. s.e t-stat. p-value
-------------+--------------------------------------------------

age | .16845566 .11901965 1.4153601 .07848147
grade | -.03958659 .04550678 -.86990548 .19217603
south | -.53406297 .13625918 -3.919464 .00004437

not_smsa | .0984639 .13080979 .75272577 .22580736
_Iyear_71 | 1.6032853 1.0337023 1.5510126 .06044933
_Iyear_72 | 1.1740137 .91650676 1.2809657 .10010286
_Iyear_73 | .97015581 .79589985 1.2189421 .11143309
_Iyear_77 | .24177005 .33043231 .73167798 .23218257
_Iyear_78 | .25282926 .21264697 1.1889624 .11722723
_Iyear_80 | .54363568 .08483378 6.4082453 7.360e-11
_Iyear_82 | -.3246461 .2861711 -1.1344475 .12830343
_Iyear_83 | -.88650878 .40228033 -2.203709 .01377241
_Iyear_85 | -.68779397 .63653421 -1.0805295 .13995324
_Iyear_87 | -1.3316314 .87497451 -1.5219087 .06401597
_Iyear_88 | -1.5551096 1.0362781 -1.5006681 .06672071

y-lag | .76891417 .03180295 24.177448 0

The estimation results are different from those obtained by cquadbasic because of the differ-
ent way the association between yit and yit−1 is specified in Equation 7. The test for absence
of state dependence is the t test associated with the lagged dependent variable reported in
the output above.
Finally, command cquadpseudo fits the pseudo-CML estimator of the parameters of the DL
model described in Section 2.4. The input line is as follows

xi: cquadpseudo union idcode age grade south not_smsa i.year

and produces the following output:

. xi: cquadpseudo union idcode age grade south not_smsa i.year
i.year _Iyear_70-88 (naturally coded; _Iyear_70 omitted)
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Fit Pseudo Conditional Maximum Likelihood estimator for the dynamic logit model
see Bartolucci & Nigro (2012), J.Econometrics

First step

| lk lk-lk0
------+--------------------------------------------------

1 | -4550.1859 1.000e+10
2 | -4508.4587 41.727174
3 | -4479.6267 28.832058
4 | -4464.3395 15.287228
5 | -4462.0772 2.2622144
6 | -4462.077 .0002431
7 | -4462.077 1.000e-11

Second step

| lk lk-lk0
------+--------------------------------------------------

1 | -3386.3831 1.000e+10
2 | -3072.2352 314.14795
3 | -3068.2783 3.9568752
4 | -3068.2768 .00144833
5 | -3068.2768 5.689e-10

| est. s.e.(rob) t-stat. p-value
-------------+--------------------------------------------------

age | .18590097 .12502643 1.4868934 .13704297
grade | -.03115066 .05488738 -.56753782 .57034884
south | -.62116171 .16083689 -3.8620598 .00011244

not_smsa | .10764683 .14923884 .72130574 .47072142
_Iyear_71 | .66895192 1.0824925 .61797374 .53659265
_Iyear_72 | .26741545 .96467342 .27720827 .78162019
_Iyear_73 | .04473093 .83125482 .05381134 .95708548
_Iyear_77 | -.66439033 .3474518 -1.9121798 .05585313
_Iyear_78 | -.56283602 .22525051 -2.4987114 .01246458
_Iyear_80 | -.42448135 .08815153 -4.8153602 1.469e-06
_Iyear_82 | -1.3962766 .30058041 -4.6452681 3.396e-06
_Iyear_83 | -1.8777382 .42388142 -4.4298667 9.429e-06
_Iyear_85 | -1.7545693 .66529 -2.6373 .00835689
_Iyear_87 | -2.409943 .91783499 -2.6256822 .00864755
_Iyear_88 | -2.5102739 1.0890873 -2.3049337 .02117029

y-lag | 1.6295114 .07720721 21.105691 0

The first part of the output reports the value of the log-likelihood at each iteration for the first
step, the CML estimation of the regression coefficients using a static logit model, while the



24 cquad: Conditional Inference for Dynamic Models for Binary Panel Data

second refers to the maximization of the pseudo log-likelihood with respect to the parameters
in Equation 10. The estimation results are similar to those obtained with the QE model.
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Abstract

Strict exogeneity of covariates other than the lagged dependent variable, and

conditional on unobserved heterogeneity, is often required for consistent estimation

of binary panel data models. This assumption is likely to be violated in practice

because of feedback effects from the past of the outcome variable on the present

value of covariates and no general solution is yet available. In this paper, we pro-

vide the conditions for a logit model formulation that takes into account feedback

effects without specifying a joint parametric model for the outcome and predeter-

mined explanatory variables. Our formulation is based on the equivalence between

Granger’s definition of noncausality and a modification of the Sims’ strict exogene-

ity assumption for nonlinear panel data models, introduced by Chamberlain (1982)

and for which we provide a more general theorem. We further propose estimating

the model parameters with a recent fixed-effects approach based on pseudo condi-

tional inference, adapted to the present case, thereby taking care of the correlation

between individual permanent unobserved heterogeneity and the model’s covariates

as well. Our results hold for short panels with a large number of cross-section units,

a case of great interest in microeconomic applications.

Keywords: fixed effects, noncausality, predetermined covariates, pseudo-

conditional inference, strict exogeneity.
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1 Introduction

There is an increasing number of empirical microeconomic applications that require the

estimation of binary panel data models, which are typically dynamic so as to account

for state dependence (Heckman, 1981).1 In these contexts, strict exogeneity of covariates

other than the lagged dependent variable, conditional on unobserved heterogeneity, is

required for consistent estimation of the regression and state dependence parameters,

when the estimation relies on correlated random effects or on fixed effects which are

eliminated when conditioning on suitable sufficient statistics for the individual unobserved

heterogeneity. However, the assumption of strict exogeneity is likely to be violated in

practice because there may be feedback effects from the past of the outcome variable

on the present values of the covariates, namely the model covariates may be Granger-

caused by the response variable Granger (1969). While in linear models the mainstream

approach to overcome this problem is to consider instrumental variables (Anderson and

Hsiao, 1981; Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and Bond,

1998), considerably fewer results are available for nonlinear binary panel data models

with predetermined covariates. This is particularly true with short binary panel data and

no general solution is yet available, despite the relevance of binary these type of data in

microeconomic applications.

Honoré and Lewbel (2002) propose a semiparametric estimator for the parameters of a

binary choice model with predetermined covariates. However, they provide identification

conditions when there is a further regressor that is continuous, strictly exogenous, and

independent of the individual specific effects. These requirements are often difficult to

be fulfilled in practice. Arellano and Carrasco (2003) develop a semiparametric strategy

based on the Generalized Method of Moments (gmm) estimator involving the probability

distribution of the predetermined covariates (sample cell frequencies for discrete covari-

ates or nonparametric smoothed estimates for continuous covariates) that can, however,

be difficult to employ when the set of relevant explanatory variables is large. A differ-

ent approach is taken by Wooldridge (2000), who proposes to specify a joint model for

the response variable and the predetermined covariates; the model parameters are esti-

mated by a correlated random-effects approach (Mundlak, 1978; Chamberlain, 1984), to

account for the dependence between strictly exogenous explanatory variables and individ-

ual unobserved effects, combined with a preliminary version of the Wooldridge (2005)’s

1Estimators of dynamic discrete choice models are employed in studies related to labor market par-
ticipation (Heckman and Borjas, 1980; Arulampalam, 2002; Stewart, 2007), and specifically to female
labor supply and fertility choices (Hyslop, 1999; Carrasco, 2001; Keane and Sauer, 2009; Michaud and
Tatsiramos, 2011), self-reported health status (Contoyannis et al., 2004; Halliday, 2008; Heiss, 2011; Carro
and Traferri, 2012), poverty traps (Cappellari and Jenkins, 2004; Biewen, 2009), welfare participation
(Wunder and Riphahn, 2014), unionization of workers (Wooldridge, 2005), household finance (Alessie
et al., 2004; Giarda, 2013; Brown et al., 2014), firms’ access to credit (Pigini et al., 2016), and migrants’
remitting behavior (Bettin and Lucchetti, 2016)
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solution to the initial conditions problem. Although this is an intuitive strategy, it re-

lies on distributional assumptions on the individual unobserved heterogeneity; moreover,

it is computationally demanding when the number of predetermined covariates is large

and it requires strict exogeneity of the covariates used for the parametric random-effects

correction.

A strategy similar to that developed by Wooldridge (2000) is adopted by Mosconi and

Seri (2006), who test for the presence of feedback effects in binary bivariate time-series

by means of Maximum Likelihood (ml)-based test statistics. They build their estimation

and testing proposals on the definition of Granger causality (Granger, 1969), which is

typical of the time series literature, as adapted to the nonlinear panel data setting by

Chamberlain (1982) and Florens and Mouchart (1982). While attractive, Mosconi and

Seri’s approach does not account for individual time-invariant unobserved heterogeneity

and is better suited for quite long panels, whereas applications, such as intertemporal

choices related to the labor market, poverty traps, and persistence in unemployment,

often rely on very short time-series and a large number of cross-section units resulting

from rotated surveys. Furthermore, in the short panel data setting, dealing properly with

time-invariant unobserved heterogeneity is crucial for the attainability of the estimation

results, since individual-specific effects are often correlated with the covariates of interest.

Moreover, the focus is often on properly detecting the causal effects of past events of the

phenomenon of interest, namely the true state dependence, as opposed to the persistence

generated by permanent individual unobserved heterogeneity (Heckman, 1981).

In this paper, we propose a logit model formulation for dynamic binary fixed T -panel

data model that takes into account general forms of feedback effects from the past of the

outcome variable on the present value of the covariates. Our formulation presents three

main advantages with respect to the available solutions. First, it does not require the

specification of a joint parametric model for the outcome and predetermined explanatory

variables. In fact, the starting point to build the proposed formulation is the definition

of noncausality (Granger, 1969), the violation of which corresponds to the presence of

feedback effects, as stated in terms of conditional independence by Chamberlain (1982)

for nonlinear models. Translating the definition of noncausality to a parametric model

requires, however, the specification of the conditional probability for the covariates (x).

On the contrary, we follow Chamberlain (1982) and introduce an equivalent definition

based on a modification of Sims (1972)’s strict exogeneity for nonlinear models, which

only involves specifying the probability for the binary dependent variable at each time

occasion (yt) conditional on past, present, and future values of x, and for which we provide

a more general theorem of equivalence to noncausality.

Second, the proposed model has a simple formulation and allows for the inclusion of

even a large number of predetermined covariates. Under the logit model, it amounts to
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augment the linear index function with a linear combination of the leads of the predeter-

mined covariates, along with the lags of the binary dependent variable. We analytically

prove that this augmented linear index function corresponds to the logit for the joint

distribution of yt and the future values of x, under the assumption that the distribution

of the predetermined covariates belongs to the exponential family with dispersion param-

eters (Barndorff-Nielsen, 1978) and that their conditional means depend on time-fixed

effects. In the other cases, we anyway assume a linear approximation which proves to be

effective in series of simulations while allowing us to maintain a simple approach.

Third, the logit formulation allows for a fixed-effects estimation approach based on

sufficient statistics for the incidental parameters, thus avoiding parametric assumptions

on the distribution of the individual unobserved heterogeneity. In particular, we propose

estimating the model parameters by means of a Pseudo Conditional Maximum Likeli-

hood (pcml) estimator recently put forward by Bartolucci and Nigro (2012), and here

adapted to the proposed extended formulation. They approximate the dynamic logit with

a Quadratic Exponential (qe) model (Cox, 1972; Bartolucci and Nigro, 2010), which ad-

mits a sufficient statistics for the incidental parameters and has the same interpretation

as the dynamic logit model in terms of log-odds ratio between pairs of consecutive out-

comes. In simpler contexts, this approach leads to a consistent estimator of the model

parameters under the null hypothesis of absence of true state dependence, whereas has a

reduced bias even with strong state dependence.

We study the finite sample properties of the pcml estimator for the proposed model

through an extensive simulation study. The results show that the pcml estimator exhibits

a negligible bias, for both the regression parameter associated with the predetermined co-

variate and the state dependence parameter, in the presence of substantial departures

from noncausality. In addition, the estimation bias is almost negligible when the density

of the predetermined covariate does not belong to the exponential family or its condi-

tional mean depends on time-varying effects. It is also worth noting that the qualities

of the proposed approach emerge for quite short T and a large number of cross-section

units. Finally, the pcml is compared with the correlated random-effects ml estimator of

Wooldridge (2005), adapted for the proposed formulation. This ml estimator is consistent

for the parameters of interest in presence of feedbacks, although remarkably less efficient

than the pcml in estimating the state dependence parameter, especially with short T .

However, differently from our approach, consistency relies on the assumption of indepen-

dence between the predetermined covariates and the individual unobserved effects, which

is hardly tenable in practice.

The rest of the paper is organized as follows. Section 2 introduces the definitions of

noncausality and strict exogeneity for nonlinear models. In Section 3 we illustrate the

proposed model formulation. Section 4 describes the pcml estimation approach. Section

4



5 outlines the simulation study, and Section 6 provides main conclusions.

2 Definitions

Consider panel data for a sample of n units observed at T occasions according to a single

explanatory variable xit and binary response yit, with i = 1, . . . , n and t = 1, . . . , T ,

where the response variable is affected by a time-constant unobservable intercept ci. Also

let xi,t1:t2 = (xit1 , . . . , xit2)
′ and yi,t1:t2 = (yit1 , . . . , yit2)

′ denote the column vectors with

elements referred to the period from the t1-th to the t2-th occasion, so that xi = xi,1:T

and yi = yi,1:T are referred to the entire period of observation for the same sample unit

i. Note that here we consider only one covariate to maintain the illustration simple, but

all definitions and results below naturally extend to the case of more covariates per time

occasion.

In this framework, and as illustrated in Chamberlain (1982), assuming that the eco-

nomic life of any individual begins at time t = 1, the Granger’s definition of noncausality

is:

Definition. g - The response (y) does not cause the covariate (x) conditional on the

time-fixed effect (c) if xi,t+1 is conditionally independent of yi,1:t, given ci and xi,1:t, for

all i and t, that is:

p(xi,t+1|ci,xi,1:t,yi,1:t) = p(xi,t+1|ci,xi,1:t), i = 1, . . . , n, t = 1, . . . , T − 1. (1)

Testing for g requires the knowledge and formulation of the model for each time-

specific covariate given the the previous covariates and responses. However, following

Chamberlain (1982), we introduce a condition that is the basis of the approach that we

present in the next sections.

Definition. s’ - x is strictly exogenous with respect to y, given c and the past responses,

if yit is independent of xi,t+1:T conditional on ci, xi,1:t, and yi,1:t−1, for all i and t, that is

p(yit|ci,xi,yi,1:t−1) = p(yit|ci,xi,1:t,yi,1:t−1), i = 1, . . . , n, t = 1, . . . , T − 1, (2)

where yi,t−1 disappears from the conditioning argument for t = 1.

The following result holds, whose proof is related to that provided in Chamberlain

(1982).

Theorem 1. g and s’ are equivalent conditions.

Proof. g may be reformulated as

p(xi,t+1, ci,xi,1:t,yi,1:t)

p(ci,xi,1:t,yi,1:t)
=
p(xi,t+1, ci,xi,1:t)

p(ci,xi,1:t)
, t = 1, . . . , T − 1,
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for all i. Exchanging the denominator at lhs with the numerator at rhs, the previous

equality becomes

p(yi,1:t|ci,xi,1:t+1) = p(yi,1:t|ci,xi,1:t), t = 1, . . . , T − 1,

which, by marginalization, implies that

p(yi,1:s|ci,xi,1:t+1) = p(yi,1:s|ci,xi,1:t), t = 1, . . . , T − 1, s = 1, . . . , t.

Therefore, we have

p(yis|ci,xi,1:t+1,yi,1:s−1) = p(yis|ci,xi,1:t,yi,1:s−1), t = 1, . . . , T − 1, s = 1, . . . , t.

Finally, by recursively using the previous expression for a fixed s and for t from T − 1 to

s we obtain condition s’ as defined in (2). Similarly, s’ implies that

p(xi,t+1:T |ci,xi,1:t,yi,1:t) = p(xi,t+1:T |ci,xi,1:t,yi,1:t−1), t = 1, . . . , T − 1,

for all i and implies

p(xi,s+1|ci,xi,1:s,yi,1:t) = p(xi,s+1|ci,xi,1:s,yi,1:t−1), t = 1, . . . , T − 1, s = 1, . . . , T − 1,

which, in turn, leads to condition (1) and then g. 2

It is worth noting that, apart from the case T = 2, definition s’ is stronger than the

definition of strict exogeneity of Sims (1972) adapted to the case of binary panel data,

which we denote by s. Then, being equivalent to s’, g implies s, but in general s does

not imply g. In fact, s is expressed avoiding to condition on the previous responses:

Definition. s - x is strictly exogenous with respect to y, given c, if yit is independent of

xi,t+1:T conditional on ci and xi,1:t, for all i and t, that is

p(yit|ci,xi) = p(yit|ci,xi,1:t), i = 1, . . . , n, t = 2, . . . , T. (3)

Theorem 2. g implies s.

Proof. Proceeding as in the proof of Theorem 1, g implies that

p(yis|ci,xi,1:t+1) = p(yis|ci,xi,1:t), t = 1, . . . , T − 1, s = 1, . . . , t.

By recursively using the previous expression for a fixed s and for t from T − 1 to s, we

obtain condition (3). 2
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Although the focus here is on nonlinear binary panel data models, it is useful to

accompany the discussion with the Granger’s and the Sims’ definitions in the simpler

context of linear models, as laid out by Chamberlain (1984), where testable restrictions

on the regression parameters can be derived directly. The starting point is a linear panel

data model of the form

yit = xitβ + ci + εit, i = 1, . . . , n, t = 1, . . . , T, (4)

where now the dependent variables yit are continuous and the error terms εit are iid. The

usual exogeneity assumption is stated as

E(εit|ci,xi) = 0, i = 1, . . . , n, t = 1, . . . , T, (5)

which rules out the lagged response variables from the regression specification, as well as

possible feedback effects from past values of yit on to the present and future values of the

covariate.

Now consider the minimum mean-square error linear predictor, denoted by E∗(·), and

consider the following definitions, which hold for all i:

E∗(ci|xi) = η + x′iλ, (6)

E∗(yit|xi) = αt + x′iπt, t = 1, . . . , T, (7)

where λ = (λ1, . . . , λT )′ and πt = (πt1, . . . , πtT )′ are vectors of regression coefficients.

Equation (7) may also be expressed as

E∗(yi|xi) = α+ Πxi,

with α = (α1, . . . , αT )′ and Π = (π1, . . . ,πT )′. It may be simply proved that assumptions

(4), (5), together with definition (6), imply that

Π = βI + 1λ′,

where I is an identity matrix and 1 is a column vector of ones of suitable dimension;

in the present case they are of dimension T . In Chamberlain (1984), the structure of Π

is related to the definition of strict exogeneity in Sims (1972) for linear models (equiva-

lent to condition s for binary models defined above) that, conditional on the permanent

unobserved heterogeneity, is stated as

E∗ (yit|ci,xi) = E∗ (yit|ci,xi,1:t) , t = 1, . . . , T. (8)

Sims (1972) proved the equivalence of this condition with that of noncausality of Granger
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(1969). In matrix notation, condition (8) can be written as

E∗(yi|ci,xi) = ϕ+ Ψxi + ciτ , (9)

where Ψ is a lower triangular matrix, τ = (τ1, . . . , τT )′, and ϕ = (ϕ1, . . . , ϕT )′. Assump-

tions (6) and (9) then imply the following structure for Π:

Π = B + δλ′,

where B is a lower triangular matrix and δ = (δ1, . . . , δT )′.

It is straightforward to translate the restrictions in the structure of Π to the linear

index function of a nonlinear model. In fact, Chamberlain (1984) and then Wooldridge

(2010, Section 15.8.2) show that a simple test for strict exogeneity, s, in binary panel data

models can be readily derived by adding xi,t+1 to the set of explanatory variables. In the

next section we show not only that noncausality s’ can be tested in a similar manner

within a dynamic model formulation, but also that the linear index augmented with

xi,t+1 represents, under rather general conditions, the exact log-odds ratio for the joint

probability of yit and xi,t+1 when s’ is violated, thereby providing a model formulation

that accounts for feedback effects and whose parameters may be consistently estimated.

3 Model formulation

Consider the general case in which, for i = 1, . . . , n and t = 1, . . . , T , we observe a binary

response variable yit and a vector of k covariates denoted by xit. Then, we extend the

previous notation by introducing X i,t1:t2 = (xit1 , . . . ,xit2), with X i = X i,1:T being the

matrix of the covariates for all time occasions. In order to illustrate the proposed model,

we first recall the main assumptions of the dynamic logit model.

3.1 Dynamic logit model

A standard formulation of a dynamic binary choice model assumes that, for i = 1, . . . , n

and t = 1, . . . , T , the binary response yit has conditional distribution

p(yit|ci,X i,yi,1:t−1) = p(yit|ci,xit, yi,t−1), (10)

corresponding to a first-order Markov model for yit with dependence only on the present

values of the explanatory variables. The above conditioning set can be easily enlarged to

include further lags of xit and yit.

Moreover, adopting a logit formulation for the conditional probability (see Hsiao, 2005,
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ch. 7, for a review), that is,

p(yit|ci,xit, yi,t−1) =
exp [yit (ci + x′itβ + yi,t−1γ)]

1 + exp (ci + x′itβ + yi,t−1γ)
, t = 2, . . . , T, (11)

the conditional distribution of the overall vector of responses becomes:

p(yi,2:T |ci,X i, yi1) =

exp

[
yi+ci +

T∑
t=2

yit (x′itβ + yit−1γ)

]
T∏
t=2

[1 + exp (ci + x′itβ + yi,t−1γ)]

, (12)

where β and γ are the parameters of interest for the covariates and the true state depen-

dence (Heckman, 1981), respectively, yi+ =
∑T

t=2 yit is the total score and the individual-

specific intercepts ci are often considered as nuisance parameters; moreover, the initial

observation yi1 is considered as given.

Expression (10) embeds assumption s’ by excluding leads of xit from the probability

conditioning set. It therefore rules out feedbacks from the response variable to future

covariates, that is, the Granger causality. Noncausality is often a hardly tenable assump-

tion, as when the covariates of interest depend on individual choices. If covariates are

predetermined, as opposed to strictly exogenous, estimation of the model parameters of

interest can be severely biased, when estimation is based on eliminating or approximating

ci with quantities depending on the entire observed history of covariates (Mundlak, 1978;

Chamberlain, 1984; Wooldridge, 2005).

3.2 Proposed model

As stated at the end of Section 2, dealing with violations of condition s’, formulated as

in (2), amounts to propose a generalization of the standard dynamic binary choice model

based on assumption (10). In order to allow for such violations, we specify the probability

of yit conditional on individual intercept now denoted by di, X i, and yi,1:t−1 as

p(yit|di,X i,yi,1:t−1) = p(yit|di,X i,t:t+1, yi,t−1), (13)

retaining the assumption that previous covariates and responses before yi,t−1 do not affect

yit. Note that, differently from (10), the conditioning set on the rhs includes the first-order

leads of xit. Moreover, we use a different symbol for the unobserved individual intercept

that, as will be clear in the following, is related to the individual parameter di. The

formulation can easily be extended to include an arbitrary number of leads X i,t:t+H , with

H ≤ T − 3, so that we retain at least two observations, which is necessary for inference

(see Section 4). However, we do not explicitly consider this extension because, while being
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rather obvious, it strongly complicates the following exposition.2 Following the discussion

in Chamberlain (1984) and the suggestion in Wooldridge (2010, 15.8.2) on testing the

strict exogeneity assumption, a test for noncausality can be derived by specifying the

model as

p(yit|di,X i,t:t+1, yi,t−1) = g−1(di + x′itβ + x′i,t+1ν + yi,t−1γ), t = 2, . . . , T − 1,

where g−1(·) is an inverse link function. It is worth noting that the null hypothesis

H0 : ν = 0 corresponds to condition s’, and then to Granger noncausality g. The

identification of β and γ in presence of departures from noncausality requires further

assumptions that lead to the formulation here proposed. In particular, we rely on the

logit formulation

p(yit|di,X i,t:t+1, yi,t−1) =
exp

[
yit
(
di + x′itβ + x′i,t+1ν + yit−1γ

)]
1 + exp

(
di + x′itβ + x′i,t+1ν + yi,t−1γ

) . (14)

Under a particular, very relevant, case this formulation is justified according to the fol-

lowing arguments.

First of all, denote the conditional density of the distribution of the covariate vector

xi,t+1 as

f(xi,t+1|ξi,X i,1:t,yi,1:t) = f(xi,t+1|ξi,xit, yit), t = 1, . . . , T − 1, (15)

where ξi is a column vector of time-fixed effects and the presence of yit allows for feedback

effects.3 Then the logit for the distribution yit conditional on ci, ξi, X i,t:t+1, and yi,t−1 is

log
p(yit = 1|ci, ξi,X i,t:t+1, yi,t−1)

p(yit = 0|ci, ξi,X i,t:t+1, yi,t−1)
= log

f(yit = 1,xi,t+1|ci, ξi,xi,t, yi,t−1)

f(yit = 0,xi,t+1|ci, ξi,xit, yi,t−1)
=

log
p(yit = 1|ci,xit, yi,t−1)f(xi,t+1|ξi,xit, yit = 1)

p(yit = 0|ci,xit, yi,t−1)f(xi,t+1|ξi,xit, yit = 0)
, (16)

where the presence of time-fixed effects in the conditioning sets for yit and xit is determined

by (13) and (15).4 Furthermore, we assume that the probability of yit conditional on ci,

xit, yi,t−1 has the dynamic logit formulation expressed in (11) so that the above expression

2Chamberlain (1984) reports an empirical example where the linear index function of a logit model
corresponds to the lhs of s in (3), where all the available lags and leads of xit are used. However, this
specification is valid only when t = 1 is the beginning of the subject’s economic life. We do not make the
same assumption here.

3In assumption (15) we maintain the same first-order dynamic as for (13). Nevertheless the assump-
tions on the conditioning set on the right-hand-side can be relaxed to include more lags of xit and yit.

4Notice that the extension of (13) to a number of leads 1 < H ≤ T − 3 requires to rewrite the

conditional density of covariates as
∏H

h=1 r(xi,t+h|ξi,xi,t+h−1, yit = z), with z = 0, 1.
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becomes

log
p(yit = 1|ci, ξi,X i,t:t+1, yi,t−1)

p(yit = 0|ci, ξi,X i,t:t+1, yi,t−1)
= ci + x′itβ + yi,t−1γ + log

f(xi,t+1|ξi,xit, yit = 1)

f(xi,t+1|ξi,xit, yit = 0)
.

The main point now is how to deal with the components involving the ratio between

the conditional density of xi,t+1 for yit = 0 and yit = 1. Suppose that the conditional

distribution of xi,t+1 belongs to the following exponential family:

f(xi,t+1|ξi,xit, yit = z) =
exp[x′i,t+1(ξi + ηz)]h(xi,t+1;σ)

K(ξi + ηz;σ)
, t = 1, . . . , T − 1, z = 0, 1,

(17)

where h(xi,t+1) is an arbitrary strictly positive function, possibly depending on suitable

dispersion parameters σ, and K(·) is the normalizing constant. Note that this structure

also covers the case of xi,t+1 depending on time-fixed effects through ξi. The following

result holds, the proof of which is trivial.

Theorem 3. Under assumptions (11) and (17), we have

log
p(yit = 1|ci, ξi,X i,t:t+1, yi,t−1)

p(yit = 0|ci, ξi,X i,t:t+1, yi,t−1)
= log

p(yit = 1|di,X i,t:t+1, yi,t−1)

p(yit = 0|di,X i,t:t+1, yi,t−1)
=

di + x′itβ + x′i,t+1ν + yi,t−1γ,

where di = ci + logK(ξi + η1;σ) − logK(ξi + η0;σ) and ν = η1 − η0, and then model

(14) holds.

Two cases satisfying (17) are for continuous covariates having multivariate normal

distribution with common variance-covariance matrix and the case of binary covariates.

More precisely, in the first case suppose that

xi,t+1|ci,xit, yit = z ∼ N(ζi + µz,Σ);

then (17) holds with ξi = Σ−1ζi and ηz = Σ−1µz, z = 0, 1, where the upper (lower)

triangular part of Σ go in ψ. Regarding the second case, we suppose that given ξi, X it,

and yit = z, the elements of xi,t+1 are conditionally independent, with the j-th element

having Bernoulli distribution with success probability

exp(ξij + ηzj)

1 + exp(ξij + ηzj)
, j = 1, . . . , k,

where k is the number of covariates. In the other cases, when (17) does not hold, we

anyway assume a linear approximation for the ratio between the conditional density of

xi,t+1 for yit = 0 and yit = 1 in (16) which is the most natural solution to maintain an

acceptable level of simplicity.
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For the following developments, it is convenient to derive the conditional distribution

of the entire vector of responses, which holds under the extended logit formulation (14)

and that directly compares with (12). For all i, the distribution at issue is

p(yi,2:T−1|di,X i, yi1, yiT ) = (18)

exp

[
y∗i+di +

T−1∑
t=2

yit
(
x′itβ + x′i,t+1ν + yit−1γ

)]
T−1∏
t=2

[
1 + exp

(
di + x′itβ + x′i,t+1ν + yi,t−1γ

)] .

where y∗i+ =
T−1∑
t=2

yit. In particular, model (18) reduces to the dynamic logit (12) under

the null hypothesis of noncausality H0 : ν = 0, if the probability in (12) is conditioned

on yiT and with different individual intercepts.

The parameters in (18) can be estimated by either a random- or fixed-effects approach,

keeping in mind that a (correlated) random-effects strategy (Mundlak, 1978; Chamber-

lain, 1984) requires the predetermined covariates in xit to be independent of di. As this

assumption may often be hardly tenable, in the next section we discuss a fixed-effects

estimation approach, first put forward by Bartolucci and Nigro (2012) and here adapted

to the present case.

4 Fixed-effects estimation

With fixed-T panel data, a fixed-effects approach to the estimation of the parameters of

the standard logit model is based on the maximization of the conditional likelihood given

suitable sufficient statistics for the incidental parameters. The conditional estimator is

common practice for static binary panel data models (Chamberlain, 1980), whereas, for

the dynamic logit model, a sufficient statistic can only be derived in special cases: in

absence of covariates with T = 3 (Chamberlain, 1985); with covariates on the basis of a

weighted conditional log-likelihood, although the estimator is consistent only under cer-

tain conditions on the distribution of the covariates and the rate of convergence is slower

than
√
n (Honoré and Kyriazidou, 2000). These shortcomings have been overcome by

Bartolucci and Nigro (2012), who approximate the dynamic logit with a qe model (Cox,

1972; Bartolucci and Nigro, 2010), which admits a sufficient statistic for the incidental pa-

rameters and has the same interpretation as the dynamic logit model in terms of log-odds

ratio. Bartolucci and Nigro (2012) also propose to adopt a pcml estimator for the model

parameters. In the following, we extend the approximating qe model to accommodate

the parametrization of the proposed model formulation in (18).
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4.1 Approximating model

The approximating model for (18) is derived by taking a linearization of the log-probability

of the latter, similar to that used in Bartolucci and Nigro (2012), that is,

log p(yi,2:T−1|di,X i, yi1, yiT ) = y∗i+di +
T−1∑
t=2

yit
(
x′itβ + x′i,t+1ν + yi,t−1γ

)
−

T−1∑
t=2

log
[
1 + exp

(
di + x′itβ + x′i,t+1ν + yi,t−1γ

)]
. (19)

The term that is nonlinear in the parameters is approximated by a first-order Taylor

series expansion around di = d̄i, β = β̄, ν = ν̄, and γ = 0, leading to

T−1∑
t=2

log
[
1 + exp

(
di + x′itβ̄ + x′i,t+1ν + yi,t−1γ

)]
≈

T−1∑
t=2

[
1 + exp

(
d̄i + x′itβ̄ + x′i,t+1ν̄

)]
+

T−1∑
t=2

qit
[
di − d̄i + x′it

(
β − β̄

)
+ x′i,t+1 (ν − ν̄)

]
+

T−1∑
t=2

qityi,t−1γ, (20)

where

qit =
exp

(
d̄i + x′itβ̄ + x′i,t+1ν̄

)
1 + exp

(
d̄i + x′itβ̄ + x′i,t+1ν̄

) .
Since only the last sum in (20) depends on yi,2:T−1, we can substitute (20) in (19) and

obtain the approximation of the joint probability (18) that gives the following qe model

p∗(yi,2:T−1|di,X i, yi1, yiT ) =

exp

[
y∗i+di +

T−1∑
t=2

yit
(
x′itβ + x′i,t+1ν

)
+
∑
t

(yit − qit)yi,t−1γ

]
∑

z2:T−1

exp

[
z∗+di +

T−1∑
t=2

zt
(
x′itβ + x′i,t+1ν

)
+
∑
t

(zt − qit)ztγ
] , (21)

where the sum at the denominator ranges over all the possible binary response vectors

z2:T−1 = (z2, . . . , zT−1)′ and z∗+ =
T−1∑
t=2

zt, with z1 = yi1.

The joint probability in (21) is closely related to the probability of the response con-

figuration yi,2:T−1 in the true model in (18). In particular, the approximating qe and the

proposed true model share the properties summarized by the following theorem that can

be proved along the lines of Bartolucci and Nigro (2010):5

5Results (ii) and (iii) can easily be derived by extending to the present case Theorem 1 in Bartolucci
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Theorem 4. For i = 1, . . . , n:

(i) In the case of γ = 0, the joint probability p∗(yi,2:T−1|di,X i, yi1, yiT ) does not depend

on yi,t−1 or on qit, and both the true (18) and approximating model (21), correspond

to the following static logit model

p∗(yi,2:T−1|di,X i, yi1, yiT ) =

exp

[
y∗i+di +

T−1∑
t=2

yit
(
x′itβ + x′i,t+1ν

)]
∑

z2:T−1

exp
[
z∗+di +

(
x′itβ + x′i,t+1ν

)] =

T−1∏
t=2

exp
[
yit
(
di + x′itβ + x′i,t+1ν

)]
1 + exp

(
di + x′itβ + x′i,t+1ν

) .
(ii) yit is conditionally independent of yi,1:t−2 given di, X i, and yi,t−1, for t = 2, . . . , T .

(iii) Under both models, the parameter γ has the same interpretation in terms of log-odds

ratio between the responses yit and yi,t−1, for t = 2, . . . , T − 1:

log
p∗(yit = 1|di,X i, yi,t−1 = 1)

p∗(yit = 0|di,X i, yi,t−1 = 1)
− log

p∗(yit = 1|di,X i, yi,t−1 = 0)

p∗(yit = 0|di,X i, yi,t−1 = 0)
= γ.

The nice feature of the qe model in (21) is that it admits sufficient statistics for the

incidental parameters di, which are the total scores y∗i+ for i = 1, . . . , n. The probability

of yi,2:T−1, conditional on X i, yi1, yiT , and y∗i+, for the approximating model is then

p∗
(
yi,2:T−1|X i, yi1, yiT , y

∗
i+

)
=

exp

[
T−1∑
t=2

yit
(
x′itβ + x′i,t+1ν

)
+

T−1∑
t=2

(yit − qit)yi,t−1γ

]
∑

z2:T−1

z∗+=y∗i+

exp

[
T−1∑
t=2

zt
(
x′itβ + x′i,t+1ν

)
+

T−1∑
t=2

(zt − qit)zt−1γ

] , (22)

which no longer depends on di and where the sum at the denominator is extended to all

the possible response configurations z2:T−1 such that z∗+ = y∗i+, where z∗+ =
T−1∑
t=2

.

4.2 Pseudo conditional maximum likelihood estimator

The formulation of the conditional log-likelihood for (22) relies on the fixed quantities qit,

that are based on a preliminary estimation of the parameters associated with the covariate

and of the individual effects. Let φ = (β′,ν ′)′ be the vector collecting all the regression

parameters and θ = (φ′,γ ′)′. The estimation approach is based on two-steps:

and Nigro (2012), that clarifies the connection between the qe and the dynamic logit model.
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1. Preliminary estimates of the parameters needed to compute qit are obtained by

maximizing the following conditional log-likelihood

`(φ̄) =
n∑

i=1

1{0 < yit < T − 2}`i(φ̄),

`i(φ̄) = log

exp

[
T−1∑
t=2

yit
(
x′itβ̄ + x′i,t+1ν̄

)]
∑

z2:T−1

z∗+=y∗i+

exp

[
T−1∑
t=2

zt
(
x′itβ̄ + x′i,t+1ν̄

)] ,

which can be maximized by a Newton-Raphson algorithm.

2. The parameter vector θ is estimated by maximizing the conditional log-likelihood

of (22), that can be written as

`∗(θ|φ̄) =
∑
i

1{0 < yit < (T − 2)}`∗i (θ|φ̄), (23)

`∗i (θ|φ̄) = log p∗θ|φ̄(yi,2:T−1|X i, yi1, yi1, y
∗
i+).

The resulting θ̂ is the pseudo conditional maximum likelihood estimator.

Function `∗(θ|φ̄) may be maximized by Newton-Raphson using the score and observed

information matrix reported below (Section 4.2.1). We also illustrate how to derive stan-

dard errors for the two-step estimator (Section 4.2.2). We leave out of the exposition the

asymptotic properties of the pcml estimator, which can be derived along the same lines

as in Bartolucci and Nigro (2012).

4.2.1 Score and information matrix

In order to write the score and information matrix for θ, it is convenient to rewrite `∗i (θ|φ̄)

as

`∗i (θ|φ̄) = u∗(yi,1:T−1)′A∗(X i)
′θ −

log
∑
z2:T−1

z∗+=y∗i+

exp [u∗(zi,1:T−1)′A∗(X i)
′θ] , (24)

where the notation u∗(yi,1:T−1) is used to stress that u∗ is a function of both the initial

value yi1 and the response configuration yi,2:T−1; similarly u∗(zi,1:T−1) is a function of yi1
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and z2:T−1, since z1 = yi1 as in (21). Moreover u∗(yi,1:T−1) and A∗(X i) in (24) are

u∗(yi,1:T−1) =

(
y′i,2:T−1,

T−1∑
t=2

(yit − qit)yi,t−1

)′

A∗(X i) =

(
X i,2:T 0

0′ 1

)
, (25)

where X i,2:T is a matrix of T − 1 rows and 2k columns, with k the number of covariates

and typical row x′i,t:t+1, while 0 is column vector of zeros having a suitable dimension.6

Using the above notation, the score s∗(θ|φ̄) = ∇θ`∗i (θ|φ̄) and the observed information

matrix J∗(θ|φ̄) = −∇θθ`∗i (θ|φ̄) are

s∗(θ|φ̄) =
∑
i

1{0 < y∗i+ < T − 2}A∗(X i){u∗(yi,2:T−1)−

E∗θ|φ̄
[
u∗(yi,2:T−1)|X i, yi1, , yiT , y

∗
i+

]
}, (26)

and

J∗(θ|φ̄) =
∑
i

1{0 < y∗i+ < T − 2}A∗(X i)×

V∗θ|φ̄
[
u∗(yi,2:T−1)|X i, yi1, y

∗
i+

]
A∗(X i)

′, (27)

where the conditional expected value and variance are defined as

E∗θ|φ̄
[
u∗(yi,2:T−1)|X i, yi1, y

∗
i+

]
=∑

zH+1:T−H

z∗+=y∗i+

u∗(zi,2:T−2)p∗θ|φ̄
(
zi,2:T−2|X i, yi1, y

∗
i+

)
,

and

V∗θ|φ̄
[
u∗(yi,2:T−1)|X i,yi,1:H , y

∗
i+

]
=

E∗θ|φ̄
[
u∗(yi,2:T−1)u∗(yi,2:T−1)′|X i, yi1, y

∗
i+

]
−

E∗θ|φ̄
[
u∗(yi,2:T−1)|X i, yi1, y

∗
i+

]
E∗θ|φ̄

[
u∗(yi,2:T−1)|X i, yi1, y

∗
i+

]′
.

Following the results in Bartolucci and Nigro (2012), which can be applied directly to

6In order to clarify the structure of A∗(Xi), consider the simple case of T = 4 time occasions and one
covariate. Then

A∗(Xi) =

( xi2 xi3 0
xi3 xi4 0
0 0 1

)
.
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the present case, `∗(θ|φ̄) is always concave and J∗(θ|φ̄) is almost surely positive definite.7

Then θ̂ that maximizes `∗(θ|φ̄) is found at convergence of the standard Newton-Raphson

algorithm.

4.2.2 Standard errors

The computation of standard errors must take into account the first step estimation of φ̄.

As Bartolucci and Nigro (2012) we also rely on the gmm approach (Hansen, 1982) and

cast the estimating equations as

m(φ̄,θ) =
n∑

i=1

1{0 < y∗i+ < T − 2}mi(φ̄,θ) = 0,

where mi(φ̄,θ) contains the score vectors of the first step, ∇φ̄`i(φ̄), and of the second

step, ∇θ|φ̄`∗i (θ|φ̄). Then the gmm estimator is (φ̃
′
, θ̂
′
)′ and its variance-covariance matrix

can be estimated as

V (φ̃, θ̂) = H(φ̃, θ̂)−1S(φ̃, θ̂)
[
H(φ̃, θ̂)−1

]′
,

where

S(φ̄,θ) =
∑
i

1{0 < y∗i+ < T − 2}mi(φ̄,θ)mi(φ̄,θ)′,

H(φ̄,θ) =
∑
i

1{0 < y∗i+ < T − 2}H i(φ̄,θ).

Matrix H i(φ̄,θ) is composed of four blocks as follows:

H i(φ̄,θ) =

( ∇φ̄φ̄`i(φ̄) 0

∇θφ̄`∗i (θ|β̄) ∇θθ`∗i (θ|β̄)

)
.

The north-west block is expressed as

∇φ̄φ̄`i(φ̄) = X i,2:TVφ̄
[
u(yi,2:T−1)|X i, yi1, yiT , y

∗
i+

]
X ′i,2:T ,

where X i,2:T is defined in (25) and Vφ̄ is the conditional variance in the static logit model.

Moreover, ∇θθ`∗i (θ|φ̄) is equal to −J∗(θ|φ̄); see definition (27). Finally, the derivation

of ∇θφ̄`∗i (θ|φ̄) is not straightforward and we therefore rely on the numerical derivative of

(26) with respect to φ̄.

7See Bartolucci and Nigro (2012), Section 5, Theorem 2.
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5 Simulation study

In this section we describe the design and illustrate the main results of the simulation

study we used to investigate about the final sample properties of the pcml estimator for

the parameters of the proposed model formulation. In the first part of the study, the

main focus is on the performance under substantial departures from noncausality, which

we obtain by a non-zero effect from the past values of the binary dependent variable on

the present value of the covariate. In the second part, we compare the pcml estimator of

(18) with an alternative ml random-effects estimator for the same model, based on the

proposal by Wooldridge (2005) to account for the initial condition problem.

5.1 Simulation design

The simulation study is based on samples drawn from a dynamic logit model, where the

linear index specification includes the lagged dependent variable, one explanatory variable

xit possibly predetermined, one strictly exogenous variable vit, and individual unobserved

heterogeneity. The model assumes that

yit = 1{ci + βxit − 0.5vit + γyit−1 + εit ≥ 0}, (28)

for i = 1, . . . , n, t = 2, . . . , T , with initial condition

yi1 = 1{ci + βxi1 − 0.5vi1 + εi1 ≥ 0}.

In the considered scenarios, the error terms εit, t = 1, . . . , T , follow a logistic distribution

with zero mean and variance equal to π2/3 and the individual specific intercepts ci are

allowed to be correlated with xit and vit.

We consider a benchmark design and some extensions that are characterized by differ-

ent choices for the distribution of the explanatory variable xit. The general formulation

is

xit = w(ξi + x∗it + ψvit + ηyit−1), (29)

x∗it ∼ N(0, π2/3),

for t = 2, . . . , T , the initial value is xi1 = w(ξi+x
∗
i1+ψvi1) with x∗i1 being again a zero mean

normal with variance π2/3, and vit = ξi+v∗it, for t = 1, . . . , T , where v∗it is also N(0, π2/3).

The parameter η governs the violation of s’, stated in Section 2, and it takes value η = 0

under the assumption of noncausality, with η 6= 0 otherwise. In our benchmark design, we

let w(·) be the identity function and ψ = 0, so that assumption (17) is satisfied and the

model of Theorem 3 holds. We also consider two alternative designs where (17) does not
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hold and the model formulated in Theorem 3 is an approximation: first, we let w(·) be an

indicator function so that xit becomes a binary covariate with a normally distributed error

term, with p(xit = 1|ξi, vit, yi,t−1) = Φ(ξi +x∗it +ψvit + ηyi,t−1), where Φ(·) is the standard

normal cdf and therefore does not belong to the exponential family in (17); secondly, we

let the w(·) be the identity function and set ψ = 0.5 in order for xit to depend on other

time varying covariates.

Based on x∗it, the individual intercepts ci and ξi are derived as

ci = (1/T )
4∑

t=1

x∗it, (30)

ξi = $ ci +
√

1−$2uit,

with $ = 0.5, uit ∼ N(0, 1) and for i = 1, . . . , n. This way, the generating model admits a

correlation between the covariates and the individual-specific intercepts and dependence

between the unobserved heterogeneity in both processes for y and x.

In most economic applications, the parameters of interest are γ, measuring the state

dependence, and the regression coefficient β. Based on the generating model (28), we

ran experiments for scenarios with γ = 0, 1 and β = 0,−1. We examine violations of

noncausality by setting η = −1, compared with the same scenarios with η = 0. The

chosen values for β, γ, and η are consistent with likely situations in practice that relate,

for instance, to the feedback effect of past employment on present child birth when an-

alyzing female labor supply (see also Mosconi and Seri, 2006, for a related application).

Notice that here we are implicitly assuming that the only source of contemporaneous en-

dogeneity, namely the reverse causality between xit and yit, is completely captured by the

correlation between the individual specific intercepts in the two processes. The sample

sizes considered are n = 500, 1000 for T = 4, 8. The number of Monte Carlo replications

is 1000.

5.2 Main results

Tables 1–6 report the main results of our simulation study. Tables 1–4 show the results

for the benchmark design, under which the covariate xit, generated as in (29), is normally

distributed, with w(·) being the identity function, and ψ = 0, for all the combinations of

the chosen values of β and γ. Tables 5 and 6 report the simulation results for the two

extensions of our benchmark design, under which xit is generated as a binary variable and

with a dependence on the time varying covariate vit, respectively, for β = −1, γ = 1, and

η = 0,−1.

For each scenario, we investigate the finite sample performance of the pcml estimator

in Section 4 for the proposed formulation (18) in two cases representing the null and
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alternative hypotheses of noncausality described by s’ in Section 2: pcml1 denotes the

pcml estimator for the parameters in (18); pcml0 denotes the estimator of (18) with

the constraint ν = 0. For each estimator, we report the mean bias, the median bias, the

root-mean square error (RMSE), the median absolute error (MAE), as in Honoré and

Kyriazidou (2000), and the t-tests at the 5% nominal size for H0 : β̂ = β, and H0 : γ̂ = γ.

Finally we report the t-tests at the 5% nominal size for noncausality, H0 : ν = 0. We

expect pcml0 to yield biased estimators when η 6= 0 since, following s’, the lead of xit

is omitted from the model specification. We limit the discussion to the estimation of β

and γ, which are likely to be the parameters of main interest in applications. Results

concerning the other model parameters are available upon request.

Table 1 summarizes the simulation results for our benchmark design and β = γ = 0.

With η = 0, that is, in absence of feedback effects, the mean bias and median bias are

always negligible, whereas the MAE and RMSE decrease with both n and T for the two

models considered. While the same considerations hold for pcml1 when η = −1, the pcml

estimators of β provided by pcml0 is severely biased and leads to misleading inference,

although this pattern is alleviated for T = 8. The same patterns are shown in Table 2,

where β is equal to −1. Moreover, the t-test for H0 : ν = 0 always attains its nominal

size and exhibits strong empirical power in all the scenarios with η = −1

Tables 3 and 4 summarize simulation results for the same designs when γ = 1. They

depict similar situations to those in Tables 1 and 2, with the exception of the bias of γ,

that slightly increases. In fact, the performance of the pcml estimator may be especially

sensitive to the degree of state dependence in the generated samples. A high value of

γ leads to a reduction of the actual sample size via the indicator function in (23) and

represents a large deviation from the approximating point by which (20) is derived. Nev-

ertheless, Bartolucci and Nigro (2012) show that the bias and root-mean square error of

pcml estimator of γ in the dynamic logit model decrease at a rate close to
√
n and as T

grows also for γ moving away from 0.

Tables 5 and 6 report the simulation results for two departures from the benchmark

design: Table 5 refers to a binary covariate generated by a normal link function, while

Table 6 refers to a normally distributed covariate depending on the time-varying covariate

vit (see Section 5.1 for details). These exercises are meant to investigate the properties

of the pcml estimator when assumption (17) does not hold and the model formulated in

Theorem 3 just embeds a linear approximation of (17). When the covariate is binary, the

bias of the pcml1 estimator of β and γ is always negligible. As for efficiency, the RMSE

and MAE are slightly higher for β, although they decrease with both n and T (see Table

5). On the other hand, the results for ψ = 0.5 in Table 6 mirror closely those in Table 4,

except for a larger bias with T = 4.
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Table 1: Normally distributed covariate, β = 0, γ = 0, ψ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.003 0.072 -0.003 0.048 0.052 -0.026 0.305 -0.031 0.210 0.039 0.051
pcml0 -0.001 0.060 0.001 0.039 0.045 -0.027 0.302 -0.025 0.209 0.036

n = 500, T = 8

pcml1 -0.000 0.027 0.000 0.018 0.066 0.003 0.106 0.002 0.073 0.055 0.037
pcml0 -0.000 0.027 -0.000 0.018 0.062 0.003 0.106 0.002 0.073 0.056

n = 1000, T = 4

pcml1 0.000 0.051 -0.000 0.034 0.051 0.002 0.224 0.009 0.143 0.055 0.050
pcml0 -0.000 0.043 -0.001 0.029 0.052 0.002 0.223 0.010 0.143 0.052

n = 1000, T = 8

pcml1 0.001 0.019 0.001 0.012 0.048 0.000 0.074 -0.002 0.048 0.053 0.055
pcml0 0.001 0.018 0.001 0.012 0.053 0.000 0.074 -0.002 0.048 0.053

η = −1
n = 500, T = 4

pcml1 0.002 0.078 -0.001 0.054 0.042 -0.013 0.338 -0.009 0.224 0.045 0.984
pcml0 0.155 0.167 0.154 0.154 0.694 0.138 0.346 0.152 0.236 0.057

n = 500, T = 8

pcml1 -0.003 0.027 -0.002 0.018 0.047 -0.000 0.112 -0.000 0.076 0.044 1.000
pcml0 0.048 0.054 0.048 0.048 0.498 0.053 0.115 0.049 0.078 0.078

n = 1000, T = 4

pcml1 -0.002 0.053 -0.002 0.037 0.051 -0.003 0.245 -0.002 0.166 0.055 1.000
pcml0 0.149 0.155 0.149 0.149 0.935 0.149 0.275 0.153 0.195 0.089

n = 1000, T = 8

pcml1 -0.003 0.020 -0.004 0.014 0.071 0.004 0.080 0.003 0.055 0.046 1.000
pcml0 0.048 0.052 0.048 0.048 0.795 0.057 0.092 0.056 0.063 0.129
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Table 2: Normally distributed covariate, β = −1, γ = 0, ψ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.049 0.178 -0.027 0.106 0.039 0.037 0.482 0.028 0.325 0.056 0.055
pcml0 -0.039 0.165 -0.020 0.102 0.048 0.033 0.473 0.018 0.318 0.056

n = 500, T = 8

pcml1 -0.007 0.049 -0.005 0.034 0.057 -0.006 0.135 -0.000 0.095 0.049 0.045
pcml0 -0.007 0.049 -0.004 0.033 0.056 -0.006 0.134 -0.001 0.094 0.053

n = 1000, T = 4

pcml1 -0.019 0.117 -0.005 0.075 0.043 0.005 0.309 0.010 0.219 0.041 0.037
pcml0 -0.015 0.111 -0.007 0.073 0.046 0.006 0.307 0.007 0.222 0.042

n = 1000, T = 8

pcml1 -0.001 0.035 0.001 0.023 0.051 0.005 0.090 0.006 0.060 0.040 0.056
pcml0 -0.001 0.035 0.001 0.022 0.055 0.005 0.090 0.007 0.060 0.041

η = −1
n = 500, T = 4

pcml1 -0.058 0.208 -0.037 0.122 0.058 -0.015 0.501 -0.020 0.333 0.051 0.808
pcml0 0.122 0.199 0.138 0.158 0.222 0.045 0.474 0.058 0.317 0.050

n = 500, T = 8

pcml1 -0.006 0.055 -0.005 0.035 0.049 0.002 0.148 0.002 0.101 0.058 1.000
pcml0 0.047 0.069 0.048 0.052 0.194 -0.097 0.170 -0.095 0.122 0.112

n = 1000, T = 4

pcml1 -0.027 0.134 -0.018 0.082 0.060 -0.003 0.340 -0.003 0.224 0.049 0.981
pcml0 0.140 0.177 0.148 0.150 0.330 0.055 0.325 0.043 0.213 0.051

n = 1000, T = 8

pcml1 -0.003 0.039 -0.003 0.027 0.056 0.007 0.101 0.007 0.069 0.055 1.000
pcml0 0.050 0.061 0.051 0.051 0.311 -0.091 0.133 -0.091 0.096 0.172
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Table 3: Normally distributed covariate, β = 0, γ = 1, ψ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.002 0.079 0.001 0.051 0.033 -0.003 0.418 -0.000 0.289 0.063 0.040
pcml0 -0.000 0.069 -0.003 0.046 0.025 -0.010 0.412 -0.013 0.288 0.060

n = 500, T = 8

pcml1 -0.002 0.027 -0.003 0.018 0.049 0.005 0.113 0.004 0.076 0.048 0.052
pcml0 -0.002 0.027 -0.003 0.017 0.049 0.005 0.113 0.003 0.075 0.046

n = 1000, T = 4

pcml1 -0.003 0.054 -0.003 0.037 0.031 -0.025 0.279 -0.029 0.195 0.052 0.035
pcml0 -0.002 0.048 -0.000 0.032 0.045 -0.029 0.277 -0.033 0.193 0.049

n = 1000, T = 8

pcml1 -0.001 0.020 -0.000 0.014 0.051 -0.001 0.080 -0.006 0.054 0.049 0.059
pcml0 -0.001 0.020 -0.000 0.014 0.051 -0.002 0.080 -0.005 0.054 0.048

η = −1
n = 500, T = 4

pcml1 0.006 0.085 0.008 0.056 0.037 -0.004 0.441 -0.016 0.297 0.050 0.894
pcml0 0.143 0.157 0.143 0.143 0.520 0.147 0.442 0.140 0.281 0.055

n = 500, T = 8

pcml1 0.007 0.031 0.006 0.021 0.065 0.006 0.125 0.003 0.084 0.057 1.000
pcml0 0.018 0.032 0.017 0.022 0.104 0.008 0.114 0.002 0.078 0.055

n = 1000, T = 4

pcml1 0.004 0.060 0.005 0.042 0.039 -0.001 0.301 -0.002 0.191 0.059 0.992
pcml0 0.139 0.147 0.137 0.137 0.815 0.148 0.323 0.147 0.225 0.075

n = 1000, T = 8

pcml1 0.004 0.020 0.003 0.013 0.059 0.002 0.089 0.004 0.060 0.055 1.000
pcml0 0.015 0.023 0.014 0.016 0.118 0.005 0.082 0.003 0.056 0.058
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Table 4: Normally distributed covariate, β = −1, γ = 1, ψ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.030 0.207 0.003 0.120 0.056 0.056 0.571 0.032 0.365 0.038 0.056
pcml0 -0.027 0.190 -0.001 0.106 0.052 0.045 0.560 0.035 0.360 0.038

n = 500, T = 8

pcml1 -0.007 0.052 -0.005 0.036 0.048 0.005 0.143 0.006 0.092 0.059 0.056
pcml0 -0.006 0.052 -0.003 0.036 0.048 0.005 0.142 0.004 0.093 0.055

n = 1000, T = 4

pcml1 0.006 0.124 0.012 0.085 0.063 0.009 0.393 0.001 0.267 0.050 0.043
pcml0 0.000 0.116 0.007 0.077 0.050 0.012 0.389 0.001 0.265 0.044

n = 1000, T = 8

pcml1 -0.001 0.036 -0.001 0.024 0.047 0.009 0.100 0.011 0.064 0.057 0.058
pcml0 -0.000 0.036 -0.000 0.024 0.047 0.009 0.099 0.009 0.065 0.056

η = −1
n = 500, T = 4

pcml1 -0.031 0.211 -0.002 0.133 0.045 0.035 0.632 0.032 0.392 0.041 0.509
pcml0 0.123 0.219 0.148 0.175 0.185 0.053 0.590 0.055 0.386 0.045

n = 500, T = 8

pcml1 -0.003 0.059 0.001 0.041 0.052 -0.020 0.158 -0.021 0.108 0.052 1.000
pcml0 0.022 0.060 0.025 0.042 0.084 -0.150 0.211 -0.147 0.155 0.186

n = 1000, T = 4

pcml1 0.012 0.139 0.025 0.095 0.057 0.018 0.405 0.012 0.269 0.035 0.809
pcml0 0.151 0.193 0.165 0.168 0.334 0.045 0.391 0.042 0.261 0.037

n = 1000, T = 8

pcml1 0.003 0.043 0.005 0.029 0.059 -0.016 0.113 -0.015 0.079 0.046 1.000
pcml0 0.027 0.048 0.029 0.035 0.130 -0.145 0.180 -0.144 0.144 0.299
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Table 5: Binary covariate, β = −1, γ = 1, ψ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.007 0.352 -0.005 0.242 0.040 0.005 0.398 0.009 0.263 0.049 0.045
pcml0 -0.011 0.309 0.001 0.210 0.038 -0.003 0.390 0.004 0.260 0.048

n = 500, T = 8

pcml1 -0.010 0.116 -0.010 0.078 0.050 0.000 0.113 -0.002 0.076 0.053 0.060
pcml0 -0.008 0.115 -0.009 0.076 0.049 0.000 0.113 -0.001 0.076 0.051

n = 1000, T = 4

pcml1 0.019 0.238 0.023 0.160 0.042 -0.018 0.279 -0.029 0.187 0.060 0.045
pcml0 -0.000 0.211 0.003 0.140 0.040 -0.019 0.277 -0.033 0.187 0.057

n = 1000, T = 8

pcml1 -0.009 0.080 -0.012 0.054 0.049 0.004 0.079 0.002 0.054 0.040 0.065
pcml0 -0.008 0.079 -0.010 0.053 0.047 0.004 0.079 0.001 0.054 0.040

η = −1
n = 500, T = 4

pcml1 0.022 0.364 0.038 0.236 0.044 0.001 0.409 -0.007 0.278 0.048 0.579
pcml0 0.432 0.528 0.447 0.449 0.309 0.042 0.399 0.029 0.267 0.052

n = 500, T = 8

pcml1 0.008 0.121 0.005 0.083 0.047 -0.003 0.116 -0.009 0.080 0.048 1.000
pcml0 0.049 0.124 0.046 0.080 0.074 -0.024 0.114 -0.027 0.083 0.049

n = 1000, T = 4

pcml1 0.044 0.265 0.063 0.185 0.048 -0.022 0.290 -0.032 0.193 0.052 0.883
pcml0 0.447 0.494 0.450 0.451 0.553 0.029 0.283 0.018 0.189 0.055

n = 1000, T = 8

pcml1 0.013 0.088 0.014 0.057 0.063 -0.001 0.081 0.002 0.055 0.043 1.000
pcml0 0.053 0.098 0.052 0.067 0.108 -0.022 0.081 -0.019 0.054 0.057
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Table 6: Normally distributed covariate, β = −1, γ = 1, ψ = 0.5

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.075 0.278 -0.037 0.140 0.043 0.103 0.774 0.111 0.469 0.049 0.058
pcml0 -0.044 0.222 -0.015 0.125 0.039 0.077 0.708 0.073 0.447 0.038

n = 500, T = 8

pcml1 -0.006 0.058 -0.004 0.036 0.054 0.007 0.154 0.008 0.101 0.032 0.056
pcml0 -0.004 0.057 -0.001 0.036 0.053 0.005 0.152 0.006 0.098 0.035

n = 1000, T = 4

pcml1 -0.017 0.158 -0.009 0.099 0.064 0.013 0.491 -0.008 0.321 0.038 0.046
pcml0 -0.008 0.144 0.004 0.091 0.063 0.009 0.475 -0.024 0.316 0.034

n = 1000, T = 8

pcml1 -0.002 0.042 0.001 0.027 0.049 0.015 0.113 0.013 0.073 0.049 0.049
pcml0 -0.001 0.041 0.001 0.027 0.047 0.015 0.112 0.013 0.074 0.051

η = −1
n = 500, T = 4

pcml1 -0.115 0.372 -0.045 0.170 0.062 0.087 0.970 0.022 0.527 0.071 0.408
pcml0 0.092 0.257 0.132 0.184 0.164 0.059 0.810 0.008 0.475 0.065

n = 500, T = 8

pcml1 -0.002 0.066 -0.001 0.044 0.057 -0.001 0.183 -0.000 0.119 0.061 1.000
pcml0 0.027 0.067 0.028 0.048 0.092 -0.107 0.200 -0.101 0.133 0.115

n = 1000, T = 4

pcml1 -0.027 0.191 -0.001 0.119 0.055 0.032 0.538 0.029 0.345 0.050 0.690
pcml0 0.133 0.203 0.151 0.167 0.248 0.054 0.503 0.053 0.318 0.048

n = 1000, T = 8

pcml1 0.001 0.046 0.002 0.032 0.060 -0.014 0.126 -0.014 0.084 0.055 1.000
pcml0 0.029 0.053 0.030 0.037 0.121 -0.118 0.166 -0.119 0.124 0.173
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5.3 Comparison with alternative estimators

We compare the performance of the pcml estimator for model (18) with two alternative

approaches. The first, denoted by W, is the correlated random-effects approach based

on the proposal by Wooldridge (2005) for nonlinear dynamic panel data models, where

the individual unobserved heterogeneity is assumed to be normally distributed and ini-

tial conditions are handled by specifying the distribution of ci conditional on the initial

value of yi. In Wooldridge (2005) a general formulation for this conditional distribution

is proposed, where the individual random effects are allowed to depend on linear combi-

nations of time-averages of strictly exogenous covariates (Mundlak, 1978). We specify the

following conditional distribution of ci

ci|yi1 ∼ yi1α + v̄iπ + c∗i , c∗i ∼ N(0, σ2
c ), i = 1, . . . , n.

where v̄i = (1/T )
∑T

t=1 vit. It is worth noting that, in this case, the ml estimator of the

model parameters is consistent if c∗i is independent of the possibly predetermined covariate

xit. Therefore, we generate samples where ci in (30) is distributed as a normal random

variable with zero mean, unit variance, and $ = 0, in order to avoid the misspecification

of the random effects. Nevertheless we also compare the ml and pcml estimator in the

scenario where the individual intercepts are generated as in (30).

The second is the so-called infeasible logit estimator (Honoré and Kyriazidou, 2000)

denoted by inf, where the generated individual intercepts are used as an additional co-

variate and the model parameters are then estimated by ml based on the pooled logit

model formulation. The purpose is to compare the pcml estimator with a benchmark

that is not sensitive to substantial deviations from the approximating model (20).

Tables 7 and 8 summarize the results of the simulation study, that we limit to the

scenarios with β = −1, γ = −1, and η = 0,−1. Table 7 contains the results based on

the samples generated with individual effects independent of the model covariate. The

biases for β obtained by pcml and w are similar to those obtained by the infeasible logit,

especially with T = 8, and the RMSE and MAE attain the same order of magnitude to

those of inf with n = 1000 and T = 8. With η = −1, w shows a small bias for β and

values of RMSE and MAE similar to the pcml estimator. As for γ, the bias of w increases

with both values of η. This result is likely due to the fact that the actual number of time

occasions exploited by the ml estimator is too small for w to deliver a negligible bias, for

which at least 8 occasions are required (Akay, 2012). As expected, though, w exhibits

rather large biases when the individual intercepts are generated as in (30) with $ = 0.25

(see Table 8), which makes the pcml a more attractive alternative since this is a scenario

that is more likely to occur in practice.
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Table 7: Normally distributed covariate, β = −1, γ = 1, ci ∼ N(0, 1), $ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml 0.003 0.204 0.024 0.133 0.063 0.011 0.454 -0.006 0.317 0.051 0.059
w -0.013 0.131 -0.003 0.090 0.054 0.030 0.279 0.031 0.199 0.045 0.046
inf -0.012 0.094 -0.013 0.063 0.045 0.013 0.102 0.012 0.066 0.051 0.053

n = 500, T = 8

pcml -0.003 0.064 0.002 0.045 0.049 0.005 0.121 0.004 0.080 0.047 0.046
w -0.002 0.060 -0.000 0.041 0.045 0.005 0.112 0.005 0.076 0.045 0.040
inf -0.002 0.055 -0.001 0.037 0.055 0.005 0.056 0.003 0.038 0.047 0.043

n = 1000, T = 4

pcml 0.022 0.138 0.032 0.092 0.052 -0.023 0.294 -0.031 0.197 0.045 0.060
w -0.003 0.095 0.004 0.065 0.060 0.025 0.203 0.034 0.138 0.061 0.051
inf -0.005 0.070 -0.003 0.047 0.064 0.007 0.069 0.007 0.047 0.042 0.037

n = 1000, T = 8

pcml -0.000 0.046 -0.000 0.032 0.056 -0.003 0.083 -0.003 0.056 0.040 0.064
w 0.002 0.042 0.003 0.028 0.062 -0.003 0.079 -0.002 0.052 0.042 0.056
inf 0.002 0.038 0.001 0.024 0.057 0.002 0.040 0.002 0.028 0.041 0.044

η = −1
n = 500, T = 4

pcml -0.010 0.279 0.020 0.173 0.058 0.023 0.559 -0.004 0.343 0.049 0.993
w -0.059 0.187 -0.035 0.118 0.044 0.061 0.370 0.072 0.254 0.059 1.000
inf -0.014 0.113 -0.006 0.074 0.054 0.007 0.120 0.003 0.078 0.045 1.000

n = 500, T = 8

pcml 0.025 0.085 0.027 0.057 0.061 -0.030 0.162 -0.029 0.111 0.050 1.000
w -0.051 0.090 -0.049 0.061 0.089 0.104 0.180 0.103 0.124 0.118 1.000
inf -0.004 0.065 -0.001 0.043 0.047 0.002 0.070 -0.001 0.047 0.051 1.000

n = 1000, T = 4

pcml 0.016 0.182 0.028 0.128 0.048 -0.025 0.379 -0.028 0.242 0.044 1.000
w -0.041 0.134 -0.036 0.087 0.059 0.063 0.268 0.062 0.186 0.060 1.000
inf -0.010 0.081 -0.009 0.055 0.055 0.011 0.085 0.011 0.057 0.044 1.000

n = 1000, T = 8

pcml 0.025 0.064 0.026 0.044 0.077 -0.038 0.121 -0.038 0.080 0.071 1.000
w -0.050 0.073 -0.050 0.053 0.148 0.096 0.143 0.098 0.105 0.165 1.000
inf -0.000 0.046 0.000 0.030 0.052 0.003 0.050 0.001 0.033 0.061 1.000
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Table 8: Normally distributed covariate, β = −1, γ = 1, ci = (1/T )
∑4

t=1 x
∗
it, $ = 0.5

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml -0.002 0.194 0.018 0.123 0.053 -0.011 0.432 -0.020 0.290 0.055 0.057
w 0.162 0.205 0.167 0.169 0.311 -0.205 0.362 -0.197 0.245 0.085 0.663
inf -0.011 0.098 -0.008 0.066 0.058 0.016 0.094 0.015 0.064 0.049 0.065

n = 500, T = 8

pcml -0.011 0.065 -0.009 0.045 0.052 0.005 0.118 0.003 0.078 0.041 0.054
w 0.056 0.082 0.058 0.061 0.183 -0.061 0.125 -0.064 0.089 0.067 0.277
inf -0.005 0.054 -0.006 0.036 0.051 0.005 0.056 0.005 0.038 0.055 0.050

n = 1000, T = 4

pcml 0.028 0.132 0.038 0.094 0.058 -0.010 0.305 -0.009 0.206 0.056 0.051
w 0.173 0.194 0.176 0.176 0.547 -0.196 0.289 -0.193 0.212 0.148 0.915
inf -0.005 0.068 -0.006 0.045 0.059 0.006 0.067 0.009 0.045 0.058 0.053

n = 1000, T = 8

pcml -0.003 0.043 -0.004 0.028 0.047 0.006 0.088 0.004 0.057 0.058 0.045
w 0.063 0.074 0.062 0.062 0.325 -0.060 0.100 -0.060 0.070 0.124 0.488
inf -0.000 0.037 -0.000 0.025 0.037 0.000 0.039 -0.000 0.026 0.051 0.037

η = −1
n = 500, T = 4

pcml 0.002 0.276 0.021 0.177 0.058 0.003 0.534 -0.023 0.356 0.039 0.996
w 0.057 0.200 0.072 0.143 0.101 0.007 0.416 0.037 0.293 0.060 1.000
inf -0.068 0.130 -0.068 0.083 0.074 0.229 0.255 0.226 0.226 0.517 1.000

n = 500, T = 8

pcml 0.023 0.086 0.021 0.060 0.059 -0.030 0.163 -0.033 0.114 0.055 1.000
w -0.020 0.079 -0.016 0.055 0.062 0.060 0.158 0.058 0.107 0.073 1.000
inf -0.016 0.069 -0.016 0.046 0.056 0.117 0.135 0.116 0.116 0.399 1.000

n = 1000, T = 4

pcml 0.023 0.183 0.040 0.122 0.050 -0.022 0.370 -0.028 0.245 0.045 1.000
w 0.072 0.152 0.075 0.107 0.129 0.007 0.298 0.011 0.203 0.066 1.000
inf -0.063 0.102 -0.060 0.070 0.114 0.222 0.236 0.220 0.220 0.814 1.000

n = 1000, T = 8

pcml 0.024 0.062 0.025 0.042 0.075 -0.029 0.115 -0.032 0.084 0.059 1.000
w -0.021 0.057 -0.022 0.039 0.056 0.057 0.116 0.058 0.081 0.076 1.000
inf -0.018 0.050 -0.017 0.033 0.061 0.113 0.123 0.113 0.113 0.669 1.000
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6 Conclusions

In this paper, we propose a novel model formulation for dynamic binary panel data

models that accounts for feedback effects from the past of the outcome variable on the

present value of covariates. Our proposal is particularly well suited for short panels with a

large number of cross-section units, typically provided by rotated or strongly unbalanced

continuous surveys, often employed for microeconomic applications. Our formulation is

based on the equivalence between Granger’s definition of noncausality and a modification

of the Sims’ strict exogeneity assumption for nonlinear panel data models, introduced by

Chamberlain (1982) and for which we provide a more general theorem.

Under the logit model, the proposed model formulation yields three main advantages

compared to the few available alternatives: (i) it does not require the specification of a

parametric model for the predetermined explanatory variables; (ii) it has a simple formu-

lation and allows, in practice, for the inclusion of a large number of predetermined covari-

ates, discrete or continuous; (iii) its parameters can be estimated within a fixed-effects

approach by a pcml, thereby allowing for an arbitrary dependence structure between the

model covariates and the individual permanent unobserved heterogeneity.

From our simulation results, it emerges that pcml provides consistent estimation of

the regression and state dependence parameters in presence of substantial departures

from noncausality and that the bias is negligible even when the conditions for the exact

logit model formulation are violated. Furthermore, we show that the alternative random-

effects ml estimator based on Wooldridge (2005) for the model here proposed exhibits

comparable finite-sample properties, provided the dependence between the predetermined

covariate and the unobserved heterogeneity is reliably accounted for.

Finally, the logit model here proposed is fairly easy to estimate using available software.

The pcml estimator of the proposed model can be implemented using the package cquad

(Bartolucci and Pigini, 2016), whereas any routine for the random-effects logit model can

be used for correlated-random effects ml estimator.

30



References

Akay, A. (2012). Finite-sample comparison of alternative methods for estimating dynamic

panel data models. Journal of Applied Econometrics, 27(7):1189–1204.

Alessie, R., Hochguertel, S., and van Soest, A. (2004). Ownership of Stocks and Mutual

Funds: A Panel Data Analysis. The Review of Economics and Statistics, 86(3):783–796.

Anderson, T. W. and Hsiao, C. (1981). Estimation of dynamic models with error compo-

nents. Journal of the American statistical Association, 76(375):598–606.

Arellano, M. and Bond, S. (1991). Some tests of specification for panel data: Monte carlo

evidence and an application to employment equations. The review of economic studies,

58(2):277–297.

Arellano, M. and Bover, O. (1995). Another look at the instrumental variable estimation

of error-components models. Journal of econometrics, 68(1):29–51.

Arellano, M. and Carrasco, R. (2003). Binary choice panel data models with predeter-

mined variables. Journal of Econometrics, 115(1):125–157.

Arulampalam, W. (2002). State dependence in unemployment incidence: evidence for

british men revisited. Technical report, IZA Discussion paper series.

Barndorff-Nielsen, O. (1978). Information and exponential families in statistical theory.

John Wiley & Sons.

Bartolucci, F. and Nigro, V. (2010). A dynamic model for binary panel data with unob-

served heterogeneity admitting a
√
n-consistent conditional estimator. Econometrica,

78:719–733.

Bartolucci, F. and Nigro, V. (2012). Pseudo conditional maximum likelihood estimation of

the dynamic logit model for binary panel data. Journal of Econometrics, 170:102–116.

Bartolucci, F. and Pigini, C. (2016). cquad: An R and Stata package for conditional max-

imum likelihood estimation of dynamic binary panel data models. Journal of Statistical

Software, In press.

Bettin, G. and Lucchetti, R. (2016). Steady streams and sudden bursts: persistence

patterns in remittance decisions. Journal of Population Economics, 29(1):263–292.

Biewen, M. (2009). Measuring state dependence in individual poverty histories when

there is feedback to employment status and household composition. Journal of Applied

Econometrics, 24(7):1095–1116.

31



Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic

panel data models. Journal of econometrics, 87(1):115–143.

Brown, S., Ghosh, P., and Taylor, K. (2014). The existence and persistence of house-

hold financial hardship: A bayesian multivariate dynamic logit framework. Journal of

Banking & Finance, 46:285–298.

Cappellari, L. and Jenkins, S. P. (2004). Modelling low income transitions. Journal of

Applied Econometrics, 19(5):593–610.

Carrasco, R. (2001). Binary choice with binary endogenous regressors in panel data.

Journal of Business & Economic Statistics, 19(4):385–394.

Carro, J. M. and Traferri, A. (2012). State dependence and heterogeneity in health using a

bias-corrected fixed-effects estimator. Journal of Applied Econometrics, 29(2):181–207.

Chamberlain, G. (1980). Analysis of covariance with qualitative data. The Review of

Economic Studies, 47(1):225–238.

Chamberlain, G. (1982). The general equivalence of granger and sims causality. Econo-

metrica: Journal of the Econometric Society, 50(3):569–581.

Chamberlain, G. (1984). Panel data. Handbook of Econometrics, 2:1247–1318.

Chamberlain, G. (1985). Heterogeneity, omitted variable bias, and duration dependence.

In Heckman, J. J. and Singer, B., editors, Longitudinal Analysis of Labor Market Data.

Cambridge University Press: Cambridge.

Contoyannis, P., Jones, A. M., and Rice, N. (2004). Simulation-based inference in dynamic

panel probit models: an application to health. Empirical Economics, 29(1):49–77.

Cox, D. (1972). The analysis of multivariate binary data. Applied statistics, 21(2):113–120.

Florens, J.-P. and Mouchart, M. (1982). A note on noncausality. Econometrica: Journal

of the Econometric Society, 50(3):583–591.

Giarda, E. (2013). Persistency of financial distress amongst italian households: Evidence

from dynamic models for binary panel data. Journal of Banking & Finance, 37(9):3425

– 3434.

Granger, C. W. (1969). Investigating causal relations by econometric models and cross-

spectral methods. Econometrica: Journal of the Econometric Society, 37(3):424–438.

Halliday, T. J. (2008). Heterogeneity, state dependence and health. The Econometrics

Journal, 11(3):499–516.

32



Hansen, L. P. (1982). Large sample properties of generalized method of moments estima-

tors. Econometrica: Journal of the Econometric Society, 50(4):1029–1054.

Heckman, J. J. (1981). Heterogeneity and state dependence. Structural Analysis of Dis-

crete Data with Econometric Applications, MIT Press: Cambridge MA. Manski CF,

McFadden (eds).

Heckman, J. J. and Borjas, G. J. (1980). Does unemployment cause future unemployment?

definitions, questions and answers from a continuous time model of heterogeneity and

state dependence. Economica, 47(187):pp. 247–283.

Heiss, F. (2011). Dynamics of self-rated health and selective mortality. Empirical eco-

nomics, 40(1):119–140.
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